Citation: Chao Guan, Hong Yu. Hydrophilic interaction liquid chromatography with indirect ultraviolet detection for the separation and quantification of pyrrolidinium ionic liquid cations[J]. Chinese Chemical Letters, ;2015, 26(11): 1371-1375. doi: 10.1016/j.cclet.2015.08.004 shu

Hydrophilic interaction liquid chromatography with indirect ultraviolet detection for the separation and quantification of pyrrolidinium ionic liquid cations

  • Corresponding author: Hong Yu, 
  • Received Date: 20 March 2015
    Available Online: 7 May 2015

  • A method of hydrophilic interaction liquid chromatography with indirect ultraviolet detection was developed to determine three pyrrolidinium ionic liquid cations, i.e. N-methyl-N-ethyl pyrrolidinium cation ([MEPy]+), N-methyl-N-propyl pyrrolidinium cation ([MPPy]+) and N-methyl-N-butyl pyrrolidinium cation ([MBPy]+). Chromatographic separation was achieved on a hydrophilic column using imidazolium ionic liquids and organic solvents as the mobile phase. The effects of the background ultraviolet absorption reagents, the imidazolium ionic liquids, detection wavelength, organic solvents, column temperature and the pH value of the mobile phase on the separation and determination of pyrrolidinium cations were investigated and the retention behaviors in hydrophilic interaction chromatography were discussed. The optimized chromatographic conditions were selected. Under the optimal conditions, the detection limits (S/N = 3) for [MEPy]+, [MPPy]+ and [MBPy]+ were 0.59, 0.53 and 0.46 mg/L, respectively. The method has been successfully applied to the determination of the three ionic liquids synthesized in our chemistry laboratory. This research results may improve the analytical method of ionic liquid cations.
  • 加载中
    1. [1]

      [1] Z.S. Gao, S. Sun, W. Li, et al., An efficient ionic liquid supported divergent assembly of 3,6-branched glucosamine-containing pentasaccharide, Chin. Chem. Lett. 25 (2014) 1525-1530.

    2. [2]

      [2] Y.J. Ma, M. Li, H. Yu, R.S. Li, Fast analysis of thiocyanate by ion-pair chromatography with direct conductivity detection on a monolithic column, Chin. Chem. Lett. 24 (2013) 1067-1069.

    3. [3]

      [3] T.D. Ho, C. Zhang, L.W. Hantao, J.L. Anderson, Ionic liquids in analytical chemistry: fundamentals, advances, and perspectives, Anal. Chem. 86 (2014) 262-285.

    4. [4]

      [4] M.J. Ruiz-Angel, A. Berthod, Reversed-phase liquid chromatography analysis of alkyl-imidazolium ionic liquids: II. Effects of different added salts and stationary phase influence, J. Chromatogr. A 1189 (2008) 476-482.

    5. [5]

      [5] H. Yu, Y.M. Sun, C.M. Zou, Imidazolium ionic liquid as the background ultraviolet absorption reagent for determination of morpholinium cations by high performance liquid chromatography-indirect ultraviolet detection, Chin. Chem. Lett. 25 (2014) 1371-1374.

    6. [6]

      [6] C.M. Zou, H. Yu, M.Y. Wang, Determination of tetraethyl ammonium by ion-pair chromatography with indirect ultraviolet detection using 4-aminophenol hydrochloride as background ultraviolet absorbing reagent, Chin. Chem. Lett. 25 (2014) 201-204.

    7. [7]

      [7] Q. Chen, H. Yu, J.F. Wang, Determination of pyridinium ionic liquid cations by ion chromatography with direct conductivity detection, J. Liq. Chromatogr. Relat. Technol. 35 (2012) 1184-1193.

    8. [8]

      [8] G. Le Rouzo, C. Lamouroux, C. Bresson, et al., Hydrophilic interaction liquid chromatography for separation and quantification of selected room-temperature ionic liquids, J. Chromatogr. A 1164 (2007) 139-144.

    9. [9]

      [9] C. Lamouroux, G. Foglia, G. Le Rouzo, How to separate ionic liquids: use of hydrophilic interaction liquid chromatography and mixed mode phases, J. Chromatogr. A 1218 (2011) 3022-3028.

    10. [10]

      [10] A.J. Alpert, Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds, J. Chromatogr. 499 (1990) 177-196.

    11. [11]

      [11] Y. An, H. Yu, C.M. Zou, Rapid determination of pyrrolidinium ionic liquid cations by monolithic column-ion-pair chromatography with indirect ultraviolet detection, Chin. J. Anal. Chem. 41 (2013) 1057-1062.

    12. [12]

      [12] R.Q. Zhang, H. Yu, X.J. Sun, Separation and determination of pyrrolidinium ionic liquid cations by ion chromatography with direct conductivity detection, Chin. Chem. Lett. 24 (2013) 503-505.

    13. [13]

      [13] S.L. Da, Indirect photometric high-performance liquid chromatography, Chin. J. Anal. Chem. 17 (1989) 372-381.

    14. [14]

      [14] X.J. Dai, Y. He, Y.M. Wei, B.L. Gong, A novel hydrophilic polystyrene-based beads for hydrophilic interaction chromatography by surface-initiated atom transfer radical polymerization, Chin. Chem. Lett. 22 (2011) 245-248.

    15. [15]

      [15] R.P. Li, Q. Yuan, Y.P. Huang, Hydrophilic interaction chromatography on silica column: retention mechanism and its influential factors, Chin. J. Chromatogr. 32 (2014) 675-681.

    16. [16]

      [16] M.L. Zhang, X.J. Liang, S.X. Jiang, H.D. Qiu, Preparation and applications of surfaceconfined ionic-liquid stationary phases for liquid chromatography, Trends Anal. Chem. 53 (2014) 60-72.

  • 加载中
    1. [1]

      Zixu XiePengfei ZhangZiyao ZhangChen ChenXing Wang . The choice of antimicrobial polymers: Hydrophilic or hydrophobic?. Chinese Chemical Letters, 2024, 35(9): 109768-. doi: 10.1016/j.cclet.2024.109768

    2. [2]

      Zhibin RenShan LiXiaoying LiuGuanghao LvLei ChenJingli WangXingyi LiJiaqing Wang . Penetrating efficiency of supramolecular hydrogel eye drops: Electrostatic interaction surpasses ligand-receptor interaction. Chinese Chemical Letters, 2024, 35(11): 109629-. doi: 10.1016/j.cclet.2024.109629

    3. [3]

      Cheng WangJi WangDong LiuZhi-Ling Zhang . Advances in virus-host interaction research based on microfluidic platforms. Chinese Chemical Letters, 2024, 35(12): 110302-. doi: 10.1016/j.cclet.2024.110302

    4. [4]

      Zhefei HuJingwen LiaoJiawen ZhouLulu ZhaoYanjuan LiuYuefei ZhangWei ChenSheng Tang . A new green approach to synthesizing MIP-202@porous silica microspheres for positional isomer/enantiomer/hydrophilic separation. Chinese Chemical Letters, 2025, 36(1): 109985-. doi: 10.1016/j.cclet.2024.109985

    5. [5]

      Jinli Chen Shouquan Feng Tianqi Yu Yongjin Zou Huan Wen Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168

    6. [6]

      Tong ZhangXiaojing LiangLicheng WangShuai WangXiaoxiao LiuYong Guo . An ionic liquid assisted hydrogel functionalized silica stationary phase for mixed-mode liquid chromatography. Chinese Chemical Letters, 2025, 36(1): 109889-. doi: 10.1016/j.cclet.2024.109889

    7. [7]

      Yan-Bo LiYi LiLiang Yin . Copper(Ⅰ)-catalyzed diastereodivergent construction of vicinal P-chiral and C-chiral centers facilitated by dual "soft-soft" interaction. Chinese Chemical Letters, 2024, 35(7): 109294-. doi: 10.1016/j.cclet.2023.109294

    8. [8]

      Hongxia LiXiyang WangDu QiaoJiahao LiWeiping ZhuHonglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747

    9. [9]

      Wantong ZhangZixing XuGuofei DaiZhijian LiChunhui Deng . Removal of Microcystin-LR in lake water sample by hydrophilic mesoporous silica composites under high-throughput MALDI-TOF MS detection platform. Chinese Chemical Letters, 2024, 35(5): 109135-. doi: 10.1016/j.cclet.2023.109135

    10. [10]

      Tian FengYun-Ling GaoDi HuKe-Yu YuanShu-Yi GuYao-Hua GuSi-Yu YuJun XiongYu-Qi FengJie WangBi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259

    11. [11]

      Haoyang WangRonghao ZhangYanlun RenLi Zhang . A convenient method for measuring gas-liquid volumetric mass transfer coefficient in micro reactors. Chinese Chemical Letters, 2024, 35(4): 108833-. doi: 10.1016/j.cclet.2023.108833

    12. [12]

      Wangyan HuKe LiXiangnan DouNing LiXiayan Wang . Nano-sized stationary phase packings retained by single-particle frit for microchip liquid chromatography. Chinese Chemical Letters, 2024, 35(4): 108806-. doi: 10.1016/j.cclet.2023.108806

    13. [13]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    14. [14]

      Yang LiYihan ChenJiaxin LuoQihuan LiYiwu QuanYixiang Cheng . Enhanced circularly polarized luminescence emission promoted by achiral dichroic oligomers of F8BT in cholesteric liquid crystal. Chinese Chemical Letters, 2024, 35(11): 109864-. doi: 10.1016/j.cclet.2024.109864

    15. [15]

      Yuqing DingZhiying YiZhihui WangHongyu ChenYan Zhao . Liquid nitrogen post-treatment for improved aggregation and electrical properties in organic semiconductors. Chinese Chemical Letters, 2024, 35(12): 109918-. doi: 10.1016/j.cclet.2024.109918

    16. [16]

      Jianwen ZhaoShuai WangShanshan ZhaoLiwei ChenFangang MengXuelin Tian . A non-fluorinated liquid-like membrane with excellent anti-scaling performance for membrane distillation. Chinese Chemical Letters, 2025, 36(1): 109883-. doi: 10.1016/j.cclet.2024.109883

    17. [17]

      Jiajia WangXinXin GeYajing XiangXiaoliang QiYing LiHangbin XuErya CaiChaofan ZhangYulong LanXiaojing ChenYizuo ShiZhangping LiJianliang Shen . An ionic liquid functionalized sericin hydrogel for drug-resistant bacteria-infected diabetic wound healing. Chinese Chemical Letters, 2025, 36(2): 109819-. doi: 10.1016/j.cclet.2024.109819

    18. [18]

      Mengchen Liu Yufei Zhang Yi Xiao Yang Wei Meichen Bi Huaide Jiang Yan Yu Shenghong Zhong . High stretchability and toughness of liquid metal reinforced conductive biocompatible hydrogels for flexible strain sensors. Chinese Journal of Structural Chemistry, 2025, 44(3): 100518-100518. doi: 10.1016/j.cjsc.2025.100518

    19. [19]

      Luyu ZhangZirong DongShuai YuGuangyue LiWeiwen KongWenjuan LiuHaisheng HeYi LuWei WuJianping Qi . Ionic liquid-based in situ dynamically self-assembled cationic lipid nanocomplexes (CLNs) for enhanced intranasal siRNA delivery. Chinese Chemical Letters, 2024, 35(7): 109101-. doi: 10.1016/j.cclet.2023.109101

    20. [20]

      Feng-Qing HuangYu WangJi-Wen WangDai YangShi-Lei WangYuan-Ming FanRaphael N. AlolgaLian-Wen Qi . Chemical isotope labeling-assisted liquid chromatography-mass spectrometry enables sensitive and accurate determination of dipeptides and tripeptides in complex biological samples. Chinese Chemical Letters, 2024, 35(11): 109670-. doi: 10.1016/j.cclet.2024.109670

Metrics
  • PDF Downloads(0)
  • Abstract views(759)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return