Citation: Nader Ghaffari Khaligh, Sharifah Bee Abd Hamid, Salam J. J. Titinchi. N-Methylimidazolium perchlorate as a new ionic liquid for the synthesis of bis(pyrazol-5-ol)s under solvent-free conditions[J]. Chinese Chemical Letters, ;2016, 27(01): 104-108. doi: 10.1016/j.cclet.2015.07.027 shu

N-Methylimidazolium perchlorate as a new ionic liquid for the synthesis of bis(pyrazol-5-ol)s under solvent-free conditions

  • Corresponding author: Nader Ghaffari Khaligh, 
  • Received Date: 12 June 2015
    Available Online: 15 July 2015

    Fund Project:

  • N-Methylimidazolium perchlorate([MIm]ClO4) was synthesized and some of its physico-chemical properties, such as density, surface tension were investigated. A thermo gravimetric analysis(TGA) and solvent performance were also studied. The results show that this ionic liquid is an excellent catalyst for the synthesis of 4,4'-(arylmethylene)bis(1H-pyrazol-5-ol) derivatives under solvent-free conditions. This method has the advantages of high yield, clean transformation, simple operation and short reaction time. The ionic liquid can be recycled without significant loss of activity.
  • 加载中
    1. [1]

      [1](a) P. Wasserschied, T. Welton(Eds.), Ionic Liquids in Synthesis, VCH Wiley, Weinheim, 2002,, ISBN:3-527-30515-7;(b) P. Wassercheid, W. Keim, Ionic liquids-new "solutions" for transition metal catalysis, Angew. Chem. Int. Ed. 39(2000) 3772-3789;(c) J. Dupont, R.F. de Souza, P.A.Z. Suarez, Ionic liquid(molten salt) phase organometallic catalysis, Chem. Rev. 102(2002) 3667-3692;(d) J.D. Holbrey, K.R. Seddon, Clean products and processes, Ionic Liquids 1(1999) 223-236;(e) S. Keskin, D. Kayrak-Talay, U. Akman, Ö. Hortaçsu, A review of ionic liquids towards supercritical fluid applications, J. Supercrit. Fluids 43(2007) 150-180;(f) M.A.P. Martins, C.P. Frizzo, A.Z. Tier, et al., Ionic liquids in heterocyclic synthesis, Chem. Rev. 114(2014) 1-70.

    2. [2]

      [2] A.B. Pereiro, J.M.M. Araújo, S. Martinho, et al., Fluorinated ionic liquids:properties and applications, ACS Sustain. Chem. Eng. 1(2013) 427-439.

    3. [3]

      [3] I.M. Saaid, S.Q.A. Mahat, B. Lal, et al., Experimental investigation on the effectiveness of 1-butyl-3-methylimidazolium perchlorate ionic liquid as a reducing agent for heavy oil upgrading, Ind. Eng. Chem. Res. 53(2014) 8279-8284.

    4. [4]

      [4](a) R. Hagiwara, Y. Ito, Room temperature ionic liquids of alkylimidazolium cations and fluoroanions, J. Fluorine Chem. 105(2000) 221-227;(b) R.P. Swatloski, J.D. Holbrey, R.D. Rogers, Ionic liquids are not always green:hydrolysis of 1-butyl-3-methylimidazolium hexafluorophosphate, Green Chem. 5(2003) 361-363.

    5. [5]

      [5](a) G. Mariappan, B.P. Saha, L. Sutharson, et al., Anti-inflammatory, antipyretic and toxicological evaluation of some newer 3-methyl pyrazolone derivatives, Saudi Pharma. J. 19(2011) 115-122;(b) V.C. Filho, R. Correa, Z. Vaz, et al., Further studies on analgesic activity of cyclic imides Ⅱ, Farmaco 53(1998) 55-57;(c) M. Gokce, S. Utku, E. Kupeli, Synthesis and analgesic and anti-inflammatory activities 6-substituted-3(2H)-pyridazinone-2-acetyl-2-(p-substituted/nonsubstituted benzal)hydrazone derivatives, Eur. J. Med. Chem. 44(2009) 3760-3764;(d) M.M.F. Ismail, Y.A. Ammar, H.S.A. EI-Zahaby, S.I. Eisa, S.E. Barakat, Synthesis of novel 1-pyrazolylpyridin-2-ones as potential anti-inflammatory and analgesic agents, Arch. Pharm. Life Sci. 340(2007) 476-482;(e) N. Uramaru, H. Shigematsu, A. Toda, et al., Design, synthesis, and pharmacological activity of nonallergenic pyrazolone-type antipyretic analgesics, J. Med. Chem. 53(2010) 8727-8733.

    6. [6]

      [6] M.F. Brana, A. Gradillas, A.G. Ovalles, et al., Synthesis and biological activity of N,Ndialkylaminoalkyl-substituted bisindolyl and diphenyl pyrazolone derivatives, Bioorg. Med. Chem. 14(2006) 9-16.

    7. [7]

      [7] K. Sujatha, G. Shanthi, N.P. Selvam, et al., Synthesis and antiviral activity of 4,4'-(arylmethylene)bis(1H-pyrazol-5-ols) against peste des petits ruminant virus(PPRV), Bioorg. Med. Chem. Lett. 19(2009) 4501-4503.

    8. [8]

      [8] K.R. Kim, K. Ju-Lee, K. Ji-Sun, et al., EK-6136(3-mathyl-4-(omethyl-oximino)-1-phenylpyrazolin-activity, Eur. J. Pharmacol. 528(2005) 37-42.

    9. [9]

      [9] N. Das, A. Verma, P.K. Shrivastava, S.K. Shrivastava, Synthesis and biological evaluation of some new aryl pyrazol-3-one derivatives as potential hypoglycemic agents, Indian J. Chem. 47B(2008) 1555-1558.

    10. [10]

      [10](a) P. Manojkumar, T.K. Ravi, S. Gopalakrishnan, Antioxidant and antibacterial studies of arylazopyrazoles and arylhydrazonopyrazolones containing coumarin moiety, Eur. J. Med. Chem. 44(2009) 4690-4694;(b) K. Kumar Siva, A. Rajasekharan, Synthesis and characterisation, in vitro antioxidants activity of N mannich base of pyrazolone derivatives, Int. J. Res. Pharma. Chem. 2(2012) 327-337;(c) N. Parmer, T. Shashikant, P. Rikin, H. Barad, V. Thakkar, Synthesis, antimicrobial and antioxidant activities of some 5-pyrazolone based Schiff bases, J. Saudi Chem. Soc. 19(2015) 36-41.

    11. [11]

      [11] D. Castagnolo, A. De Logu, M. Radi, et al., Synthesis, biological evaluation and SAR study of novel pyrazole analogues as inhibitors of Mycobacterium tuberculosis, Bioorg. Med. Chem. 16(2008) 8587-8591.

    12. [12]

      [12] R.V. Ragavan, V. Vijayakumar, N.S. Kumari, Synthesis of some novel bioactive 4-oxy/thio substituted-1H-pyrazol-5(4H)-ones via efficient cross-Claisen condensation, Eur. J. Med. Chem. 44(2009) 3852-3857.

    13. [13]

      [13] Y. Liu, G. He, C. Kai, Y. Li, H. Zhu, Synthesis, crystal structure, and fungicidal activity of novel 1,5-diaryl-1H-pyrazol-3-oxy derivatives containing oxyacetic acid or oxy(2-thioxothiazolidin-3-yl)ethanone moieties, J. Heterocycl. Chem. 19(2012) 1370-1375.

    14. [14]

      [14] M. Londershausen, Review:approaches to new parasiticides, Pestic. Sci. 48(1996) 269-292.

    15. [15]

      [15] C. Pettinari, F. Marchetti, R. Pettinari, et al., Synthesis, structure and luminescence properties of new rare earth metal complexes with 1-phenyl-3-methyl-4-acylpyrazol-5-ones, J. Chem. Soc. Dalton Trans.(2002) 1409-1415.

    16. [16]

      [16] X.L. Li, Y.M. Wang, B. Tian, T. Matsuura, J.B. Meng, The solid-state Michael addition of 3-methyl-1-phenyl-5-pyrazolone, J. Heterocycl. Chem. 35(1998) 129-134.

    17. [17]

      [17](a) A. Kumar, S. Maurya, M.K. Gupta, R.D. Shukla, Amphiphile catalysed selective synthesis of 4-amino alkylated-1H-pyrazol-5-ol via Mannich aromatization preferred to the Knoevenagel-Michael type reaction in water, RSC Adv. 4(2014) 57953-57957;(b) Z. Zhou, Y. Zhang, An efficient and green one-pot three-component synthesis of 4,4'-(arylmethylene)bis(1H-pyrazol-5-ol)s catalyzed by 2-hydroxy ethylammonium propionate, Green Chem. Lett. Rev. 7(2014) 18-23.

    18. [18]

      [18](a) N.G. Khaligh, 4-(Succinimido)-1-butane sulfonic acid as a Brönsted acid catalyst for synthesis of pyrano[4,3-b]pyran derivatives under solvent-free conditions, Chin. Chem. Lett. 26(2014) 26-30;(b) N.G. Khaligh, S.B. Abd Hamid, 4-(Succinimido)-1-butane sulfonic acid as a Brönsted acid catalyst for the synthesis of pyrano[4,3-b]pyran derivatives using thermal and ultrasonic irradiation, Chin. J. Catal. 36(2015) 728-733.

    19. [19]

      [19](a) N.P.G. Roeges, A Guide to the Complete Interpretation of Infrared Spectra of Organic Structures, Wiley, New York, 1994;(b) A.M. Petrosyan, Vibrational spectra of l-histidine perchlorate and l-histidine tetrafluoroborate, Vib. Spectrosc. 43(2007) 284-289.

    20. [20]

      [20](a) W. Wang, S.X. Wang, X.Y. Qin, J.T. Li, Reaction of aldehydes and pyrazolones in the presence of sodium dodecyl sulfate in aqueous media, Synth. Commun. 35(2005) 1263-1270;(b) Y.J. Bai, M. Li, J. Lu, Z.J. Wang, Z. Shi, Uncatalyzed microwave-enhanced reaction of 1-phenyl-3-methylpyrazol-5-one with aromatic aldehydes under solvent-free conditions, Chin. J. Org. Chem. 24(2004) 616-620;(c) Z. Karimi-Jaberi, B. Pooladian, M. Moradi, E. Ghasemi, 1,3,5-Tris(hydrogensulfato) benzene:a new and efficient catalyst for synthesis of 4,4'-(arylmethylene)bis(1H-pyrazol-5-ol) derivatives, Chin. J. Catal. 33(2012) 1945-1949;(d) N.P. Tale, G.B. Tiwari, N.N. Karade, Un-catalyzed tandem Knoevenagel-Michael reaction for the synthesis of 4,4'-(arylmethylene)bis(1H-pyrazol-5-ols) in aqueous medium, Chin. Chem. Lett. 22(2011) 1415-1418;(e) E. Soleimani, S. Ghorbani, M. Taran, A. Sarvary, Synthesis of 4,4'-(arylmethylene)bis(3-methyl-1H-pyrazol-5-ol) derivatives in water, C.R. Chimie 15(2012) 955-961.

    21. [21]

      [21](a) S. Tayebi, K. Niknam, Synthesis of 4,4'-(arylmethylene)bis(1H-pyrazol-5-ols) via multi-component reactions by using silica-bonded sulfamic acid derivatives, Iran J. Catal. 2(2012) 69-74;(b) K. Niknam, D. Saberi, M. Sadegheyan, A. Deris, Silica-bonded S-sulfonic acid:an efficient and recyclable solid acid catalyst for the synthesis of 4,4'-(arylmethylene)bis(1H-pyrazol-5-ols), Tetrahedron Lett. 51(2010) 692-694;(c) S. Sobhani, A.R. Hasaninejad, M.F. Maleki, Z.P. Parizi, Tandem Knoevenagel-Michael reaction of 1-phenyl-3-methyl-5-pyrazolone with aldehydes using 3-aminopropylated silica gel as an efficient and reusable heterogeneous catalyst, Synth. Commun. 42(2012) 2245-2255;(d) B.S. Kuarm, B. Rajitha, Xanthan sulfuric acid:an efficient, biosupported, and recyclable solid acid catalyst for the synthesis of 4,4'-(arylmethylene)bis(1Hpyrazol-5-ols), Synth. Commun. 42(2012) 2382-2387;(e) A. Khazaei, M.A. Zolfigol, A.R. Moosavi-Zare, et al., Preparation of 4,4'-(arylmethylene)-bis(3-methyl-1-phenyl-1H-pyrazol-5-ol)s over 1,3-disulfonic acid imidazolium tetrachloroaluminate as a novel catalyst, RSC Adv. 2(2012) 8010-8013;(f) S. Bhavanarushi, V. Kanakaiah, G. Bharath, A. Gangagnirao, J. Vatsala Rani, Synthesis and antibacterial activity of 4,4'-(aryl or alkyl methylene)-bis(1Hpyrazol-5-ol) derivatives, Med. Chem. Res. 23(2014) 158-167;(g) B. Sadeghi, M. Ghorbani Rad, Synthesis of 4,4'-(arylmethylene)bis(1H-pyrazol-5-ols) catalyzed by nanosilica supported perchloric acid in water, Iran. J. Catal. 4(2014) 67-70.

  • 加载中
    1. [1]

      Tong ZhangXiaojing LiangLicheng WangShuai WangXiaoxiao LiuYong Guo . An ionic liquid assisted hydrogel functionalized silica stationary phase for mixed-mode liquid chromatography. Chinese Chemical Letters, 2025, 36(1): 109889-. doi: 10.1016/j.cclet.2024.109889

    2. [2]

      Boyuan HuJian ZhangYulin YangYayu DongJiaqi WangWei WangKaifeng LinDebin Xia . Dual-functional POM@IL complex modulate hole transport layer properties and interfacial charge dynamics for highly efficient and stable perovskite solar cells. Chinese Chemical Letters, 2024, 35(7): 108933-. doi: 10.1016/j.cclet.2023.108933

    3. [3]

      Jiajia WangXinXin GeYajing XiangXiaoliang QiYing LiHangbin XuErya CaiChaofan ZhangYulong LanXiaojing ChenYizuo ShiZhangping LiJianliang Shen . An ionic liquid functionalized sericin hydrogel for drug-resistant bacteria-infected diabetic wound healing. Chinese Chemical Letters, 2025, 36(2): 109819-. doi: 10.1016/j.cclet.2024.109819

    4. [4]

      Luyu ZhangZirong DongShuai YuGuangyue LiWeiwen KongWenjuan LiuHaisheng HeYi LuWei WuJianping Qi . Ionic liquid-based in situ dynamically self-assembled cationic lipid nanocomplexes (CLNs) for enhanced intranasal siRNA delivery. Chinese Chemical Letters, 2024, 35(7): 109101-. doi: 10.1016/j.cclet.2023.109101

    5. [5]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    6. [6]

      Entian CuiYulian LuZhaoxia LiZhilei ChenChengyan GeJizhou Jiang . Interfacial B-O bonding modulated S-scheme B-doped N-deficient C3N4/O-doped-C3N5 for efficient photocatalytic overall water splitting. Chinese Chemical Letters, 2025, 36(1): 110288-. doi: 10.1016/j.cclet.2024.110288

    7. [7]

      Yixia ZhangCaili XueYunpeng ZhangQi ZhangKai ZhangYulin LiuZhaohui ShanWu QiuGang ChenNa LiHulin ZhangJiang ZhaoDa-Peng Yang . Cocktail effect of ionic patch driven by triboelectric nanogenerator for diabetic wound healing. Chinese Chemical Letters, 2024, 35(8): 109196-. doi: 10.1016/j.cclet.2023.109196

    8. [8]

      Pei CaoYilan WangLejian YuMiao WangLiming ZhaoXu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421

    9. [9]

      Qiangwei WangHuijiao LiuMengjie WangHaojie ZhangJianda XieXuanwei HuShiming ZhouWeitai Wu . Observation of high ionic conductivity of polyelectrolyte microgels in salt-free solutions. Chinese Chemical Letters, 2024, 35(4): 108743-. doi: 10.1016/j.cclet.2023.108743

    10. [10]

      Hao-Cong LiMing ZhangQiyan LvKai SunXiao-Lan ChenLingbo QuBing Yu . Homogeneous catalysis and heterogeneous separation: Ionic liquids as recyclable photocatalysts for hydroacylation of olefins. Chinese Chemical Letters, 2025, 36(2): 110579-. doi: 10.1016/j.cclet.2024.110579

    11. [11]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    12. [12]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    13. [13]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    14. [14]

      Hongxia LiXiyang WangDu QiaoJiahao LiWeiping ZhuHonglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747

    15. [15]

      Congyan LiuXueyao ZhouFei YeBin JiangBo Liu . Confined electric field in nano-sized channels of ionic porous framework towards unique adsorption selectivity. Chinese Chemical Letters, 2025, 36(2): 109969-. doi: 10.1016/j.cclet.2024.109969

    16. [16]

      Zhenyu HuZhenchun YangShiqi ZengKun WangLina LiChun HuYubao Zhao . Cationic surface polarization centers on ionic carbon nitride for efficient solar-driven H2O2 production and pollutant abatement. Chinese Chemical Letters, 2024, 35(10): 109526-. doi: 10.1016/j.cclet.2024.109526

    17. [17]

      Ke ZhangYajing WeiLinhua XieSha KangFei LiChuanyi Wang . Amorphous titanium carbide on N-defective g-C3N5 for high-efficiency photocatalytic NO removal. Chinese Chemical Letters, 2025, 36(3): 110086-. doi: 10.1016/j.cclet.2024.110086

    18. [18]

      Tian FengYun-Ling GaoDi HuKe-Yu YuanShu-Yi GuYao-Hua GuSi-Yu YuJun XiongYu-Qi FengJie WangBi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259

    19. [19]

      Haoyang WangRonghao ZhangYanlun RenLi Zhang . A convenient method for measuring gas-liquid volumetric mass transfer coefficient in micro reactors. Chinese Chemical Letters, 2024, 35(4): 108833-. doi: 10.1016/j.cclet.2023.108833

    20. [20]

      Wangyan HuKe LiXiangnan DouNing LiXiayan Wang . Nano-sized stationary phase packings retained by single-particle frit for microchip liquid chromatography. Chinese Chemical Letters, 2024, 35(4): 108806-. doi: 10.1016/j.cclet.2023.108806

Metrics
  • PDF Downloads(0)
  • Abstract views(674)
  • HTML views(25)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return