Citation:
Mehrnoosh Kangani, Malek-Taher Maghsoodlou, Nourallah Hazeri. Vitamin B12:An efficient type catalyst for the one-pot synthesis of 3,4,5-trisubstituted furan-2(5H)-ones and N-aryl-3-aminodihydropyrrol-2-one-4-carboxylates[J]. Chinese Chemical Letters,
;2016, 27(01): 66-70.
doi:
10.1016/j.cclet.2015.07.025
-
Vitamin B12 was applied as catalyst for the one-pot three-component synthesis of 3,4,5-trisubstituted furan-2(5H)-ones from the condensation between aldehydes, amines and dialkylacetylendicarboxylates at ambient temperature in EtOH. In addition, N-aryl-3-aminodihydropyrrol-2-one-4-carboxylates were synthesised using mentioned catalyst at ambient temperature in EtOH from condensation between formaldehyde, amines, and dialkylacetylenedicarboxylates. This methodology has number of advantages such as:use of green and nonhazardous catalyst, clean work up, short reaction times, high yields and no need to column chromatography.
-
-
-
[1]
[1] K. Yamada, Cobalt:its role in health and disease, Met. Ions Life Sci. 13(2013) 295-320.
-
[2]
[2] P.G. Lenhert, D.C. Hodgkin, Structure of the 5,6-dimethylbenzimidazolylcobamide coenzyme, Nature 192(1961) 937-938.
-
[3]
[3] D.C. Hodgkin, The X-ray analysis of complicated molecules, Science 150(1965) 979-988.
-
[4]
[4] D. Dolphin, B12, John Wiley & Sons, New York, 1982.
-
[5]
[5] B. Krautler, D. Arigoni, B.T. Golding, Vitamin B12 and B12-Proteins, John Wiley & Sons, New York, 1998.
-
[6]
[6] R. Banerjee, The Chemistry and Biochemistry of B12, Wiley, New York, 1999.
-
[7]
[7] R. Scheffold, S. Abrecht, H.R. Ruf, et al., Vitamin B12-mediated electrochemical reactions in the synthesis of natural products, Pure Appl. Chem. 59(1987) 363-372.
-
[8]
[8] H. Ogoshi, Y. Kikuchi, T. Yamaguchi, H. Toi, Y. Aoyama, Asymmetric induction in the nucleophilic cyclopropane ring cleavage reaction with vitamin B12s, Organometallics 6(1987) 2175-2178.
-
[9]
[9] G. Pattenden, Cobalt mediated radical reactions in organic synthesis, Chem. Soc. Rev. 17(1988) 361-382.
-
[10]
[10] D.A. Baldwin, E.A. Betterton, S.M. Chemaly, J.M. Pratt, The chemistry of vitamin B12, J. Chem. Soc., Dalton Trans.(1985) 1613-1618.
-
[11]
[11] J.E. Baldwin, R.M. Adlington, T.W. Kang, Direct ring expansion of penicillins to 3-exomethylene cephalosporins, Tetrahedron Lett. 48(1991) 7093-7096.
-
[12]
[12] B.P. Branchaud, G.K. Friestad, in:L. Paquette(Ed.), "Vitamin B12" in Encyclopedia of Reagents for Organic Synthesis, Wiley, New York, 1995, pp. 5511-5514.
-
[13]
[13] S. Miao, R.J. Andersen, A.H. Rubrolides, Metabolites of the colonial tunicate Ritterella rubra, J. Org. Chem. 56(1991) 6275-6280.
-
[14]
[14] M. Kotora, E. Negishi, Highly efficient and selective procedures for the synthesis of gamma-alkylidenbutenolides via palladium-catalyzed enzyme coupling and palladium or silver catalyzed lactonization of(Z)-2-en-4-ynoic acids. Synthesis of rub rolides A, C, D, and E, Synthesis 1(1997) 121-128.
-
[15]
[15] M. Pour, M. Spulak, V. Buchta, et al., 3-Phenyl-5-acyloxymethyl-2H,5H-furan-2-ones:synthesis and biological activity of a novel group of potential antifungal drugs, J. Med. Chem. 44(2001) 2701-2706.
-
[16]
[16] E. Lattmann, N. Sattayasai, C.S. Schwalbe, et al., Novel anti-bacterials against MRSA:synthesis of focussed combinatorial libraries of tri-substituted 2(5H)-furanones, Curr. Drug Discov. Technol. 3(2006) 125-134.
-
[17]
[17] V. Weber, P. Coudert, C. Rubat, etal., Novel 4,5-diaryl-3-hydroxy-2(5H)-furanones as anti-oxidants and anti-inflammatory agents, Bioorg. Med. Chem. 10(2002) 1647-1658.
-
[18]
[18] A. El-Tombary, Y. Abdel-Ghany, A. Belal, E.-D. Shams, F. Soliman, Synthesis of some substituted furan-2(5H)-ones and derived quinoxalinones as potential antimicrobial and anti-cancer agents, Med. Chem. Res. 20(2011) 865-876.
-
[19]
[19] E. Lattmann, W.O. Ayuko, D. Kinchinaton, et al., Synthesis and evaluation of 5-arylated 2(5H)-furanones and 2-arylated pyridazin-3(2H)-ones as anti-cancer agents, J. Pharm. Pharmacol. 55(2003) 1259-1265.
-
[20]
[20] J. Wu, Q. Zhu, L. Wang, R. Fathi, Z. Yang, Palladium-catalyzed cross-coupling reactions of 4-tosyl-2(5H)-furanone with boronic acids:a facile and efficient route to generate 4-substituted 2(5H)-furanones, J. Org. Chem. 68(2003) 670-673.
-
[21]
[21] J. Boukouvalas, R.P. Loach, General, regiodefined access to a-substituted butenolides through metal-halogen exchange of 3-bromo-2-silyloxyfurans. Efficient synthesis of an anti-inflammatory gorgonian lipid, J. Org. Chem. 73(2008) 8109-8112.
-
[22]
[22] D. Lee, S.G. Newman, M.S. Taylor, Boron-catalyzed direct Aldol reactions of pyruvic acids, Org. Lett. 11(2009) 5486-5489.
-
[23]
[23] S. Cacchi, G. Fabrizi, A. Goggiamani, A. Sferrazza, Palladium-catalyzed reaction of arenediazonium tetrafluoroborates with methyl 4-hydroxy-2-butenoate:an approach to 4-aryl butenolides and an expeditious synthesis of rubrolide E, Synlett(2009) 1277-1280.
-
[24]
[24] M. Bassetti, A.D. Annibale, A. Fanfoni, F. Minissi, Synthesis of α,β-unsaturated 4,5-disubstituted γ-lactones via ring-closing metathesis catalyzed by the first-generation Grubbs' catalyst, Org. Lett. 7(2005) 1805-1808.
-
[25]
[25] K. Matuso, M. Shindo, Cu(Ⅱ)-catalyzed acylation by thiol esters under neutral conditions:tandem acylation-wittig reaction leading to a one-pot synthesis of butenolides, Org. Lett. 12(2010) 5346-5349.
-
[26]
[26] Y. Liu, F. Song, S. Guo, Cleavage of a carbon-carbon triple bond via gold-catalyzed cascade cyclization/oxidative cleavage reactions of(z)-enynols with molecular oxygen, J. Am. Chem. Soc. 128(2006) 11332-11333.
-
[27]
[27] D. Tejedor, A. Santos-Expósito, F. García-Tellado, A convenient entry to 5-(sp2)-substituted and 5,5-disubstituted tetronic acids, Synlett(2006) 1607-1609.
-
[28]
[28] S. Narayana Murthy, B. Madhav, A. Vijay Kumar, K. Rama Rao, Y.V.D. Nageswar, Facile and efficient synthesis of 3,4,5-substituted furan-2(5H)-ones by using bcyclodextrin as reusable catalyst, Tetrahedron 65(2009) 5251-5256.
-
[29]
[29] L. Nagarapu, U.N. Kumar, P. Upendra, R. Bantu, Simple, convenient method for the synthesis of substituted furan-2(5H)-one derivatives using Tin(Ⅱ) chloride, Synth. Commun. 42(2012) 2139-2148.
-
[30]
[30] W.J. Bai, S.K. Jakson, T.R.R. Pettus, Mild construction of 3-methyl tetramic acids enabling a formal synthesis of Palau'imide, Org. Lett. 14(2012) 3862-3865.
-
[31]
[31] M. Aginagalde, T. Bello, C. Masdeu, et al., Formation of γ-oxoacids and 1H-pyrrol-2(5H)-ones from α,β-unsaturated ketones and ethyl nitroacetate, J. Org. Chem. 75(2010) 7435-7438.
-
[32]
[32] H. Anaraki-Ardakani, M. Noei, A. Tabarzad, Facile synthesis of N-(arylsulfonyl)-4-ethoxy-5-oxo-2,5-dihydro-1H-pyrolle-2,3-dicarboxylates by one-pot three-component reaction, Chin. Chem. Lett. 23(2012) 45-48.
-
[33]
[33] L. Ettlinger, E. Gäuemann, R. Hütter, et al., Metabolites of actinomycetes 17. Mitteilung Holomycin, Helv. Chim. Acta 42(1959) 563-566.
-
[34]
[34] H. Shiozawa, S. Takahashi, Configurational studies on thiomarinol, J. Antibiot. 47(1994) 851-853.
-
[35]
[35] S.B. Singh, M.A. Goetz, E.T. Jones, et al., Oteromycin:a novel antagonist of endothelin receptor, J. Org. Chem. 60(1995) 7040-7042.
-
[36]
[36] H. He, H.Y. Yang, R. Bigelis, E.H. Solum, M. Greenstein, Pyrrocidines A and B, new antibiotics produced by a filamentous fungus, Tetrahedron Lett. 43(2002) 1633-1636.
-
[37]
[37] A.J. Clark, C.P. Dell, J.M. McDonagh, J. Geden, P. Mawdsley, Oxidative 5-endo cyclization of enamides mediated by ceric ammonium nitrate, Org. Lett. 5(2003) 2063-2066.
-
[38]
[38] J. Chen, P.Q. Huang, Y. Queneau, Enantioselective synthesis of the R-enantiomer of the feeding deterrent(S)-ypaoamide, J. Org. Chem. 74(2009) 7457-7463.
-
[39]
[39] A. Raghuraman, E. Ko, L.M. Perez, T.R. Ioerger, K. Burgess, Pyrrolinone-pyrrolidine oligomers as universal peptidomimetics, J. Am. Chem. Soc. 133(2011) 12350-12353.
-
[40]
[40] T. Kawasuji, M. Fuji, T. Yoshinaga, et al., 3-Hydroxy-1,5-dihydro-pyrrol-2-one derivatives as advanced inhibitors of HIV integrase, Bioorg. Med. Chem. 15(2007) 5487-5492.
-
[41]
[41] L. Zhang, Y. Tan, N.X. Wang, et al., Design, syntheses and 3D-QSAR studies of novel N-phenyl pyrrolidin-2-ones and N-phenyl-1H-pyrrol-2-ones as protoporphyrinogen oxidase inhibitors, Bioorg. Med. Chem. 18(2010) 7948-7956.
-
[42]
[42] Y. Mizushina, S. Kobayashi, K. Kuramochi, et al., Epolactaene, a novel neuritogenic compound in human neuroblastoma cells, selectively inhibits the activities of mammalian DNA polymerases and human DNA topoisomerase Ⅱ, Biochem. Biophys. Res. Commun. 273(2000) 784-788.
-
[43]
[43] Q. Zhu, L. Gao, Z. Chen, et al., A novel class of small-molecule caspase-3 inhibitors prepared by multicomponent reactions, Eur. J. Med. Chem. 54(2012) 232-238.
-
[44]
[44] B. Li, M.P.A. Lyle, G. Chen, et al., Substituted 6-amino-4H-[1,2] dithiolo[4,3-b]pyrrol-5-ones:synthesis, structure-activity relationships, and cytotoxic activity on selected human cancer cell lines, Bioorg. Med. Chem. 15(2007) 4601-4608.
-
[45]
[45] A.S. Demir, F. Aydigan, I.M. Akhmedov, The synthesis of chiral 5-methylene pyrrol-2(5H)-ones via photooxygenation of homochiral 2-methylpyrrole derivatives, Tetrahedron:Asymmetry 13(2002) 601-605.
-
[46]
[46] T.R.K. Reddy, C.L.X. Guo, X. Myrvang, H.K.P.M. Fischer, L.V. Dekker, Design, synthesis, and structure-activity relationship exploration of 1-substituted 4-Aroyl-3-hydroxy-5-phenyl-1H-pyrrol-2(5H)-one analogues as inhibitors of the annexin A2-S100A10 protein interaction, J. Med. Chem. 54(2011) 2080-2094.
-
[47]
[47] Q. Zhu, H. Jiang, J. Li, et al., Concise and versatile multicomponent synthesis of multisubstituted polyfunctional dihydropyrroles, J. Comb. Chem. 11(2009) 685-696.
-
[48]
[48] A.T. Khan, A. Ghosh, M.D.M. Khan, One-pot four-component domino reaction for the synthesis of substituted dihydro-2-oxypyrrole catalyzed by molecular iodine, Tetrahedron Lett. 53(2012) 2622-2626.
-
[49]
[49] H. Gao, J. Sun, C.G. Yan, Synthesis of functionalized 2-pyrrolidinones via domino reactions of arylamines, ethyl glyoxylate and acetylenedicarboxylates, Tetrahedron 69(2013) 589-594.
-
[50]
[50] S. Rana, M. Brown, A. Dutta, A. Bhaumik, C. Mukhopadhyay, Site-selective multicomponent synthesis of densely substituted 2-oxo dihydropyrroles catalyzed by clean, reusable, and heterogeneous TiO2 nanopowder, Tetrahedron Lett. 54(2013) 1371-1379.
-
[51]
[51] L. Lv, S. Zheng, X. Cai, et al., Development of four-component synthesis of tetraand pentasubstituted polyfunctional dihydropyrroles:free permutation and combination of aromatic and aliphatic amines, ACS Comb. Sci. 15(2013) 183-192.
-
[52]
[52] R. Doostmohammadi, M.T. Maghsoodlou, N. Hazeri, S.M. Habibi-Khorassani, An efficient one-pot multi-component synthesis of 3,4,5-substituted furan-2(5H)-ones catalyzed by tetra-n-butylammonium bisulfate, Chin. Chem. Lett. 24(2013) 901-903.
-
[53]
[53] M. Kangani, M.T. Maghsoodlou, N. Hazeri, Synthesis of pyrrole and furan derivatives in the presence of lactic acid as a catalyst, J. Saud. Chem. Soc.(2015), http://dx.doi.org/10.1016/j.jscs.2015.03.002.
-
[54]
[54] M.T. Maghsoodlou, S.M. Habibi-Khorasani, Z. Shahkarami, N. Maleki, M. Rostamizadeh, An efficient synthesis of 2,2'-arylmethylene bis(3-hydroxy-5,5-dimethyl-2-cyclohexene-1-one) and 1,8-dioxooctahydroxanthenes using ZnO and ZnO-acetyl chloride, Chin. Chem. Lett. 21(2010) 686-689.
-
[55]
[55] Z. Vafajoo, N. Hazeri, M.T. Maghsoodlou, H. Veisi, Electro-catalyzed multicomponent transformation of 3-methyl-1-phenyl-1H-pyrazol-5(4H)-one to 1,4-dihydropyrano[2,3-c]pyrazole derivatives in green medium, Chin. Chem. Lett.(2015), http://dx.doi.org/10.1016/j.cclet.2015.04.016.
-
[1]
-
-
-
[1]
Entian Cui , Yulian Lu , Zhaoxia Li , Zhilei Chen , Chengyan Ge , Jizhou Jiang . Interfacial B-O bonding modulated S-scheme B-doped N-deficient C3N4/O-doped-C3N5 for efficient photocatalytic overall water splitting. Chinese Chemical Letters, 2025, 36(1): 110288-. doi: 10.1016/j.cclet.2024.110288
-
[2]
Ya-Nan Yang , Zi-Sheng Li , Sourav Mondal , Lei Qiao , Cui-Cui Wang , Wen-Juan Tian , Zhong-Ming Sun , John E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048
-
[3]
You Zhou , Li-Sheng Wang , Shuang-Gui Lei , Bo-Cheng Tang , Zhi-Cheng Yu , Xing Li , Yan-Dong Wu , Kai-Lu Zheng , An-Xin Wu . I2-DMSO mediated tetra-functionalization of enaminones for the construction of novel furo[2′,3′:4,5]pyrimido[1,2-b]indazole skeletons via in situ capture of ketenimine cations. Chinese Chemical Letters, 2025, 36(1): 109799-. doi: 10.1016/j.cclet.2024.109799
-
[4]
Dong-Xue Jiao , Hui-Li Zhang , Chao He , Si-Yu Chen , Ke Wang , Xiao-Han Zhang , Li Wei , Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304
-
[5]
Ran Yu , Chen Hu , Ruili Guo , Ruonan Liu , Lixing Xia , Cenyu Yang , Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032
-
[6]
Hualin Jiang , Wenxi Ye , Huitao Zhen , Xubiao Luo , Vyacheslav Fominski , Long Ye , Pinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984
-
[7]
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005
-
[8]
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
-
[9]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
-
[10]
Liang Ma , Zhou Li , Zhiqiang Jiang , Xiaofeng Wu , Shixin Chang , Sónia A. C. Carabineiro , Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416
-
[11]
Zhi Zhu , Xiaohan Xing , Qi Qi , Wenjing Shen , Hongyue Wu , Dongyi Li , Binrong Li , Jialin Liang , Xu Tang , Jun Zhao , Hongping Li , Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194
-
[12]
Qingwang LIU . MoS2/Ag/g-C3N4 Z-scheme heterojunction: Preparation and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 821-832. doi: 10.11862/CJIC.20240148
-
[13]
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019
-
[14]
Jianyu Qin , Yuejiao An , Yanfeng Zhang . In Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002
-
[15]
Zizhuo Liang , Fuming Du , Ning Zhao , Xiangxin Guo . Revealing the reason for the unsuccessful fabrication of Li3Zr2Si2PO12 by solid state reaction. Chinese Journal of Structural Chemistry, 2023, 42(11): 100108-100108. doi: 10.1016/j.cjsc.2023.100108
-
[16]
Min WANG , Dehua XIN , Yaning SHI , Wenyao ZHU , Yuanqun ZHANG , Wei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477
-
[17]
Yuan CONG , Yunhao WANG , Wanping LI , Zhicheng ZHANG , Shuo LIU , Huiyuan GUO , Hongyu YUAN , Zhiping ZHOU . Construction and photocatalytic properties toward rhodamine B of CdS/Fe3O4 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2241-2249. doi: 10.11862/CJIC.20240219
-
[18]
Qinwen Zheng , Xin Liu , Lintao Tian , Yi Zhou , Libing Liao , Guocheng Lv . Mechanism of Fenton catalytic degradation of Rhodamine B induced by microwave and Fe3O4. Chinese Chemical Letters, 2025, 36(4): 109771-. doi: 10.1016/j.cclet.2024.109771
-
[19]
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020
-
[20]
Tong Li , Leping Pan , Yan Zhang , Jihu Su , Kai Li , Kuiliang Li , Hu Chen , Qi Sun , Zhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(735)
- HTML views(30)