Citation: Si-Yang Mu, Jing Guo, Yu-Mei Gong, Sen Zhang, Yue Yu. Synthesis and thermal properties of poly(styrene-co-acrylonitrile)- graft-polyethylene glycol copolymers as novel solid-solid phase change materials for thermal energy storage[J]. Chinese Chemical Letters, ;2015, 26(11): 1364-1366. doi: 10.1016/j.cclet.2015.07.013 shu

Synthesis and thermal properties of poly(styrene-co-acrylonitrile)- graft-polyethylene glycol copolymers as novel solid-solid phase change materials for thermal energy storage

  • Corresponding author: Jing Guo, 
  • Received Date: 28 May 2015
    Available Online: 26 June 2015

  • A novel poly(styrene-co-acrylonitrile)-graft-polyethylene glycol (SAN-g-PEG) copolymer was synthesized as new solid-solid phase change materials (SSPCMs) by grafting PEG to the main chain of poly(styrene-co-acrylonitrile). The chemical structure of the SAN-g-PEG was confirmed by the Fourier transform infrared (FT-IR) and proton nuclear magnetic resonance (1H NMR) spectroscopy techniques. The thermal energy storage properties and the storage durability of the SAN-g-PEG were investigated by differential scanning calorimetry (DSC). The SAN-g-PEG was endowed with the solid- solid phase transition temperatures within the range of 23-36 ℃ and the latent heat enthalpy ranged from 66.8 kJ/kg to 68.3 kJ/kg. Thermal cycling tests revealed that the SAN-g-PEG kept great heat storage durability after 1000 thermal cycles. The thermal stabilitywas evaluated by a thermal gravity analysis (TGA), and the initial decomposition temperature (Td) of SAN-g-PEG is 350 ℃, which proves that the SAN-g-PEG possessed good thermal stability.
  • 加载中
    1. [1]

      [1] C.Z. Chen, L.G. Wang, Y. Huang, Crosslinking of the electrospun polyethylene glycol/cellulose acetate composite fibers as shape-stabilized phase change materials, Mater. Lett. 63 (2009) 569-571.

    2. [2]

      [2] C. Liu, Y.P. Yuan, N. Zhang, X.L. Cao, X.J. Yang, A novel PCM of lauric-myristic- stearic acid/expanded graphite composite for thermal energy storage, Mater. Lett. 120 (2014) 43-46.

    3. [3]

      [3] A. Biçer, A. Sarı, Synthesis and thermal energy storage properties of xylitol pentastearate and xylitol pentapalmitate as novel solid-liquid PCMs, Sol. Energy Mater. Sol. Cell. 102 (2012) 125-130.

    4. [4]

      [4] A. Sarı, A. Biçer, Preparation and thermal energy storage properties of building material-based composites as novel form-stable PCMs, Energy Build. 51 (2012) 73-83.

    5. [5]

      [5] C.Z. Chen, L.G. Wang, Y. Huang, Ultrafine electrospun fibers based on stearyl stearate/polyethylene terephthalate composite as form stable phase change materials, Chem. Eng. J. 150 (2009) 269-274.

    6. [6]

      [6] A. Sarı, C. Alkan, A. Biçer, Synthesis and thermal properties of polystyrene-graft- PEG copolymers as new kinds of solid-solid phase change materials for thermal energy storage, Mater. Chem. Phys. 133 (2012) 87-94.

    7. [7]

      [7] Y.B. Cai, X.L. Xu, C.T. Gao, et al., Structural morphology and thermal performance of composite phase change materials consisting of capric acid series fatty acid eutectics and electrospun polyamide6 nanofibers for thermal energy storage, Mater. Lett. 89 (2012) 43-46.

    8. [8]

      [8] F. Kuznik, D. David, K. Johannes, J.-J. Roux, A review on phase change materials integrated in building walls, Renew. Sustain. Energy Rev. 15 (2011) 379-391.

    9. [9]

      [9] C. Alkan, Ö .F. Ensari, D. Kahraman, Poly (2-alkyloyloxyethylacrylate) and poly (2-alkyloyloxyethylacrylate-co-methylacrylate) comblike polymers as novel phase-change materials for thermal energy storage, J. Appl. Polym. Sci. 126 (2012) 631-640.

    10. [10]

      [10] J. Guo, H.X. Xiang, X.Y. Gong, Y.P. Zhang, Preparation and performance of the hydrolyzate of waste polyacrylonitrile fiber/poly (ethylene glycol) graft copolymerization, Energy Sour., Part A: Recov., Utilizat., Environ. Effects 33 (2011) 1067-1075.

    11. [11]

      [11] J. Guo, H.X. Xiang, Q.Q. Wang, et al., Preparation of poly (decaglycerol-co-ethylene glycol) copolymer as phase change material, Energy Build. 48 (2012) 206-210.

    12. [12]

      [12] J. Guo, P. Xie, X. Zhang, et al., Synthesis and characterization of graft copolymer of polyacrylonitrile-g-polyethylene glycol-maleic acid monoester macromonomer, J. Appl. Polym. Sci. 131 (2014) 40152.

    13. [13]

      [13] A. Sarı, C. Alkan, Ö . Lafçı, Synthesis and thermal properties of poly (styreneco- allyalcohol)-graft-stearic acid copolymers as novel solid-solid PCMs for thermal energy storage, Sol. Energy 86 (2012) 2282-2292.

    14. [14]

      [14] Y.X. Li, R.G. Liu, Y. Huang, Synthesis and phase transition of cellulose-graft-poly (ethylene glycol) copolymers, J. Appl. Polym. Sci. 110 (2008) 1797-1803.

    15. [15]

      [15] X.P. Yuan, E.Y. Ding, Synthesis and characterization of storage energy materials prepared from nano-crystalline cellulose/polyethylene glycol, Chin. Chem. Lett. 17 (2006) 1129-1132.

    16. [16]

      [16] A. Sarı, C. Alkan, A. Biçer, A. Karaipekli, Synthesis and thermal energy storage characteristics of polystyrene-graft-palmitic acid copolymers as solid-solid phase change materials, Sol. Energy Mater. Sol. Cell. 95 (2011) 3195-3201.

    17. [17]

      [17] J. Hu, H. Yu, Y.M. Chen, M.F. Zhu, Study on phase-change characteristics of PET-PEG copolymers, J. Macromol. Sci., Part B: Phys. 45 (2006) 615-621.

  • 加载中
    1. [1]

      Pengcheng SuShizheng ChenZhihong YangNingning ZhongChenzi JiangWanbin Li . Vapor-phase postsynthetic amination of hypercrosslinked polymers for efficient iodine capture. Chinese Chemical Letters, 2024, 35(9): 109357-. doi: 10.1016/j.cclet.2023.109357

    2. [2]

      Ce LiangQiuhui SunAdel Al-SalihyMengxin ChenPing Xu . Recent advances in crystal phase induced surface-enhanced Raman scattering. Chinese Chemical Letters, 2024, 35(9): 109306-. doi: 10.1016/j.cclet.2023.109306

    3. [3]

      Mengjia Luo Yi Qiu Zhengyang Zhou . Exploring temperature-driven phase dynamics of phosphate: The periodic to incommensurately modulated long-range ordered phase transition in CsCdPO4. Chinese Journal of Structural Chemistry, 2025, 44(1): 100446-100446. doi: 10.1016/j.cjsc.2024.100446

    4. [4]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    5. [5]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    6. [6]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    7. [7]

      Yue QianZhoujia LiuHaixin SongRuize YinHanni YangSiyang LiWeiwei XiongSaisai YuanJunhao ZhangHuan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785

    8. [8]

      Jingxuan LiuShiqi ZhaoXiang Wu . Flexible electrochemical capacitor based NiMoSSe electrode material with superior cycling and structural stability. Chinese Chemical Letters, 2024, 35(7): 109059-. doi: 10.1016/j.cclet.2023.109059

    9. [9]

      Zhiqing GeZuxiong PanShuo YanBaoying ZhangXiangyu ShenMozhen WangXuewu Ge . Novel high-temperature thermochromic polydiacetylene material and its application as thermal indicator. Chinese Chemical Letters, 2024, 35(11): 109850-. doi: 10.1016/j.cclet.2024.109850

    10. [10]

      Min LUOXiaonan WANGYaqin ZHANGTian PANGFuzhi LIPu SHI . Porous spherical MnCo2S4 as high-performance electrode material for hybrid supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 413-424. doi: 10.11862/CJIC.20240205

    11. [11]

      Shaonan Liu Shuixing Dai Minghua Huang . The impact of ester groups on 1,8-naphthalimide electron transport material in organic solar cells. Chinese Journal of Structural Chemistry, 2024, 43(6): 100277-100277. doi: 10.1016/j.cjsc.2024.100277

    12. [12]

      Shengyu ZhaoQinhao ShiWuliang FengYang LiuXinxin YangXingli ZouXionggang LuYufeng Zhao . Suppression of multistep phase transitions of O3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(5): 108606-. doi: 10.1016/j.cclet.2023.108606

    13. [13]

      Xue XinQiming QuIslam E. KhalilYuting HuangMo WeiJie ChenWeina ZhangFengwei HuoWenjing Liu . Hetero-phase zirconia encapsulated with Au nanoparticles for boosting electrocatalytic nitrogen reduction. Chinese Chemical Letters, 2024, 35(5): 108654-. doi: 10.1016/j.cclet.2023.108654

    14. [14]

      Tian YangYi LiuLina HuaYaoyao ChenWuqian GuoHaojie XuXi ZengChanghao GaoWenjing LiJunhua LuoZhihua Sun . Lead-free hybrid two-dimensional double perovskite with switchable dielectric phase transition. Chinese Chemical Letters, 2024, 35(6): 108707-. doi: 10.1016/j.cclet.2023.108707

    15. [15]

      Shu LinKezhen Qi . Phase-dependent lithium-alloying reactions for lithium-metal batteries. Chinese Chemical Letters, 2024, 35(4): 109431-. doi: 10.1016/j.cclet.2023.109431

    16. [16]

      Wangyan HuKe LiXiangnan DouNing LiXiayan Wang . Nano-sized stationary phase packings retained by single-particle frit for microchip liquid chromatography. Chinese Chemical Letters, 2024, 35(4): 108806-. doi: 10.1016/j.cclet.2023.108806

    17. [17]

      Zhaohong ChenMengzhen LiJinfei LanShengqian HuXiaogang Chen . Organic ferroelastic enantiomers with high Tc and large dielectric switching ratio triggered by order-disorder and displacive phase transition. Chinese Chemical Letters, 2024, 35(10): 109548-. doi: 10.1016/j.cclet.2024.109548

    18. [18]

      Zhi-Yuan YueHua-Kai LiNa WangShan-Shan LiuLe-Ping MiaoHeng-Yun YeChao Shi . Dehydration-triggered structural phase transition-associated ferroelectricity in a hybrid perovskite-type crystal. Chinese Chemical Letters, 2024, 35(10): 109355-. doi: 10.1016/j.cclet.2023.109355

    19. [19]

      Zhuoer Cai Yinan Zhang Xiu-Ni Hua Baiwang Sun . Phase transition arising from order-disorder motion in stable layered two-dimensional perovskite. Chinese Journal of Structural Chemistry, 2024, 43(11): 100426-100426. doi: 10.1016/j.cjsc.2024.100426

    20. [20]

      Tong ZhangXiaojing LiangLicheng WangShuai WangXiaoxiao LiuYong Guo . An ionic liquid assisted hydrogel functionalized silica stationary phase for mixed-mode liquid chromatography. Chinese Chemical Letters, 2025, 36(1): 109889-. doi: 10.1016/j.cclet.2024.109889

Metrics
  • PDF Downloads(0)
  • Abstract views(810)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return