Citation: Li-Yan Liu, Yi-Zhe Yan, Ya-Jie Bao, Zhi-Yong Wang. Efficient synthesis of 2-arylquinazolines via copper-catalyzed dual oxidative benzylic C-H aminations of methylarenes[J]. Chinese Chemical Letters, ;2015, 26(10): 1216-1220. doi: 10.1016/j.cclet.2015.07.008 shu

Efficient synthesis of 2-arylquinazolines via copper-catalyzed dual oxidative benzylic C-H aminations of methylarenes

  • Corresponding author: Zhi-Yong Wang, 
  • Received Date: 5 May 2015
    Available Online: 19 June 2015

    Fund Project: We are grateful to the National Nature Science Foundation of China (Nos. 2127222, 91213303, 21172205, 21432009, 21472177). (Nos. 2127222, 91213303, 21172205, 21432009, 21472177)

  • A novel copper-catalyzed dual oxidative benzylic C-H aminations of methylarenes with 2- aminobenzoketones in the presence of ammonium acetate was developed. This reaction represents a new avenue for 2-arylquinazolines with good yields. A key intermediate was detected and the kinetics isotope effect (KIE) indicated that C-H bond cleavage was the rate-determining step.
  • 加载中
    1. [1]

      [1] P.A. Plé, T.P. Green, L.F. Hennequin, et al., Discovery of a new class of anilinoquinazoline inhibitors with high affinity and specificity for the tyrosine kinase domain of c-Src, J. Med. Chem. 47(2004) 871-887.

    2. [2]

      [2] L.A. Doyle, D.D. Ross, Multidrug resistance mediated by the breast cancer resistance protein BCRP (ABCG2), Oncogene 22(2003) 7340-7358.

    3. [3]

      [3] K. Waisser, J. Gregor, H. Dostál, et al., Influence of the replacement of the oxo function with the thioxo group on the antimycobacterial activity of 3-aryl-6,8-dichloro-2H-1,3-benzoxazine-2,4(3H)-diones and 3-arylquinazoline-2,4(1H,3H)-diones, Farmaco 56(2001) 803-807.

    4. [4]

      [4] J.P. Michael, Quinoline, quinazoline and acridone alkaloids, Nat. Prod. Rep. 25(2008) 166-187.

    5. [5]

      [5] V. Colotta, D. Catarzi, F. Varano, et al., Structural investigation of the 7-chloro-3-hydroxy-1H-quinazoline-2,4-dione scaffold to obtain AMPA and kainate receptor selective antagonists. Synthesis, pharmacological, and molecular modeling studies, J. Med. Chem. 49(2006) 6015-6026.

    6. [6]

      [6] A. Witt, J. Bergman, Recent developments in the field of quinazoline chemistry, Curr. Org. Chem. 7(2003) 659-677.

    7. [7]

      [7] D.J. Connolly, D. Cusack, T.P. O'Sullivan, et al., Synthesis of quinazolinones and quinazolines, Tetrahedron 61(2005) 10153-10202.

    8. [8]

      [8] L. Jiarong, C. Xian, S. Daxin, et al., A new and facile synthesis of quinazoline-2,4(1H,3H)-diones, Org. Lett. 11(2009) 1193-1196.

    9. [9]

      [9] P.R. Marsham, A.L. Jackman, A.J. Barker, et al., Quinazoline antifolate thymidylate synthase inhibitors:replacement of glutamic acid in the C2-methyl series, J. Med. Chem. 38(1995) 994-1004.

    10. [10]

      [10] J. Zhang, D. Zhu, C. Yu, et al., A simple and efficient approach to the synthesis of 2-phenylquinazolines via sp3 C-H functionalization, Org. Lett. 12(2010) 2841-2843.

    11. [11]

      [11] J. Zhang, C. Yu, S. Wang, et al., A novel and efficient methodology for the construction of quinazolines based on supported copper oxide nanoparticles, Chem. Commun. 46(2010) 5244-5246.

    12. [12]

      [12] Y. Yan, Z. Wang, Metal-free intramolecular oxidative decarboxylative amination of primary a-amino acids with product selectivity, Chem. Commun. 47(2011) 9513-9515.

    13. [13]

      [13] Y. Yan, Y. Zhang, C. Feng, et al., Selective iodine-catalyzed intermolecular oxidative amination of C (sp3)-H bonds with ortho-carbonyl-substituted anilines to give quinazolines, Angew. Chem. Int. Ed. 51(2012) 8077-8081.

    14. [14]

      [14] R. Sarma, D. Prajapati, Microwave-promoted efficient synthesis of dihydroquinazolines, Green Chem. 13(2011) 718-722.

    15. [15]

      [15] Z.H. Zhang, X.N. Zhang, L.P. Mo, et al., Catalyst-free synthesis of quinazoline derivatives using low melting sugar-urea-salt mixture as a solvent, Green Chem. 14(2012) 1502-1506.

    16. [16]

      [16] Z. Chen, J. Chen, M. Liu, et al., Unexpected copper-catalyzed cascade synthesis of quinazoline derivatives, J. Org. Chem. 78(2013) 11342-11348.

    17. [17]

      [17] B. Han, C. Wang, R.F. Han, et al., Efficient aerobic oxidative synthesis of 2-aryl quinazolines via benzyl C-H bond amination catalyzed by 4-hydroxy-TEMPO, Chem. Commun. 47(2011) 7818-7820.

    18. [18]

      [18] X. Su, C. Chen, Y. Wang, et al., One-pot synthesis of quinazoline derivatives via [2+2+2] cascade annulation of diaryliodonium salts and two nitriles, Chem. Commun. 49(2013) 6752-6754.

    19. [19]

      [19] Y. Wang, X. Su, C. Chen, One-pot synthesis of multiply substituted quinoline and quinazoline derivatives via[2+2+2] cascade annulation with diaryliodonium salts, Synlett 24(2013) 2619-2623.

    20. [20]

      [20] D. Zhao, Q. Shen, J.-X. Li, Potassium iodide-catalyzed three-component synthesis of 2-arylquinazolines via amination of benzylic C-H bonds of methylarenes, Adv. Synth. Catal. 357(2015) 339-344.

    21. [21]

      [21] W.W. Sun, P. Cao, R.Q. Mei, et al., Palladium-catalyzed unactivated C (sp3)-H bond activation and intramolecular amination of carboxamides:a new approach to β-lactams, Org. Lett. 16(2013) 480-483.

    22. [22]

      [22] R. Xia, H.Y. Niu, G.R. Qu, et al., CuI controlled C-C and C-N bond formation of heteroaromatics through C (sp3)-H activation, Org. Lett. 14(2012) 5546-5549.

    23. [23]

      [23] H. Lu, Y. Hu, H. Jiang, et al., Stereoselective radical amination of electrondeficient C (sp3)-H bonds by Co(II)-based metalloradical catalysis:direct synthesis of a-amino acid derivatives via α-C-H amination, Org. Lett. 14(2012) 5158-5161.

    24. [24]

      [24] H.J. Kim, J. Kim, S.H. Cho, et al., Intermolecular oxidative C-N bond formation under metal-free conditions:control of chemoselectivity between aryl sp2 and benzylic sp3 C-H bond imidation, J. Am. Chem. Soc. 133(2011) 16382-16385.

    25. [25]

      [25] W.C. Gao, S. Jiang, R.L. Wang, et al., Iodine-mediated intramolecular amination of ketones:the synthesis of 2-acylindoles and 2-acylindolines by tuning N-protecting groups, Chem. Commun. 49(2013) 4890-4892.

    26. [26]

      [26] H.Y. Thu, W.Y. Yu, C.M. Che, Intermolecular amidation of unactivated sp2 and sp3 CH bonds via palladium-catalyzed cascade CH activation/nitrene insertion, J. Am. Chem. Soc. 128(2006) 9048-9049.

    27. [27]

      [27] E.T. Nadres, O. Daugulis, Heterocycle synthesis via direct C-H/N-H coupling, J. Am. Chem. Soc. 134(2012) 7-10.

    28. [28]

      [28] T. Kang, Y. Kim, D. Lee, et al., Iridium-catalyzed intermolecular amidation of sp3 C-H bonds:late-stage functionalization of an unactivated methyl group, J. Am. Chem. Soc. 136(2014) 4141-4144.

    29. [29]

      [29] G. He, Y. Zhao, S. Zhang, et al., Highly efficient syntheses of azetidines, pyrrolidines, and indolines via palladium catalyzed intramolecular amination of C (sp3)-H and C (sp2)-H bonds at g and d positions, J. Am. Chem. Soc. 134(2012) 3-6.

    30. [30]

      [30] J.J. Neumann, S. Rakshit, T. Dröge, et al., Palladium-katalysierte amidierung nichtaktivierter C (sp3)-H-bindungen:von anilinen zu indolinen, Angew. Chem. Int. Ed. 121(2009) 7024-7027.

    31. [31]

      [31] J. Pan, M. Suand, S.L. Buchwald, Palladium (0)-catalyzed intermolecular amination of unactivated C sp3-H bonds, Angew. Chem. Int. Ed. 50(2011) 8647-8651.

    32. [32]

      [32] K.W. Fiori, J. Du Bois, Catalytic intermolecular amination of C-H bonds:method development and mechanistic insights, J. Am. Chem. Soc. 129(2007) 562-568.

    33. [33]

      [33] C.G. Espino, J. Du Bois, A Rh-catalyzed C-H insertion reaction for the oxidative conversion of carbamates to oxazolidinones, Angew. Chem. Int. Ed. 113(2001) 618-620.

    34. [34]

      [34] X. Ye, Z. He, T. Ahmed, et al., 1,2,3-Triazoles as versatile directing group for selective sp2 and sp3 C-H activation:cyclization vs substitution, Chem. Sci. 4(2013) 3712-3716.

    35. [35]

      [35] Q. Zhang, K. Chen, W. Rao, et al., Stereoselective synthesis of chiral α-amino-β-lactams through palladium(II)-catalyzed sequential monoarylation/amidation of C (sp3)-H bonds, Angew. Chem. Int. Ed. 52(2013) 13588-13592.

    36. [36]

      [36] G. He, S.Y. Zhang, W.A. Nack, et al., Use of a readily removable auxiliary group for the synthesis of pyrrolidones by the palladium-catalyzed intramolecular amination of unactivated γ C (sp3)-H bonds, Angew. Chem. Int. Ed. 52(2013) 11124-11128.

    37. [37]

      [37] A. McNally, B. Haffemayer, B.S.L. Collins, et al., Palladium-catalysed CH activation of aliphatic amines to give strained nitrogen heterocycles, Nature 510(2014) 129-133.

    38. [38]

      [38] M. Yang, B. Su, Y. Wang, et al., Silver-catalysed direct amination of unactivated C-H bonds of functionalized molecules, Nat. Commun. 5(2014) 4707-4712.

    39. [39]

      [39] C.P. Allen, T. Benkovics, A.K. Turek, et al., Oxaziridine-mediated intramolecular amination of sp3-hybridizedC-Hbonds, J.Am. Chem. Soc.131(2009) 12560-12561.

    40. [40]

      [40] Q. Michaudel, D. Thevenet, P.S. Baran, Intermolecular Ritter-type C-H amination of unactivated sp3 carbons, J. Am. Chem. Soc. 134(2012) 2547-2550.

    41. [41]

      [41] Q. Li, Y. Huang, T. Chen, et al., Copper-catalyzed aerobic oxidative amination of sp3 C-H bonds:efficient synthesis of 2-hetarylquinazolin-4(3H)-ones, Org. Lett. 16(2014) 3672-3675.

    42. [42]

      [42] B.L. Tran, B. Li, M. Driess, et al., Copper-catalyzed intermolecular amidation and imidation of unactivated alkanes, J. Am. Chem. Soc. 136(2014) 2555-2563.

    43. [43]

      [43] X. Wu, Y. Zhao, G. Zhang, et al., Copper-catalyzed site-selective intramolecular amidation of unactivated C (sp3)-H bonds, Angew. Chem. Int. Ed. 53(2014) 3706-3710.

    44. [44]

      [44] R.T. Gephart, D.L. Huang, M.J.B. Aguila, et al., Catalytic C-H amination with aromatic amines, Angew. Chem. Int. Ed. 51(2012) 6488-6492.

    45. [45]

      [45] Z. Wang, J. Ni, Y. Kuninobu, et al., Copper-catalyzed intramolecular C. H and C (sp2)-H amidation by oxidative cyclization, Angew. Chem. Int. Ed. 53(2014) 3496-3499.

    46. [46]

      [46] S.N. Gavade, R.S. Balaskar, M.S. Mane, et al., An efficient method for the N-arylation of phenylurea via copper catalyzed amidation, Chin. Chem. Lett. 22(2011) 675-678.

    47. [47]

      [47] W. Liu, L.Y. Hai, R.L. Liu, et al., Copper-catalyzed N-arylation of 2-arylindoles with aryl halides, Chin. Chem. Lett. 25(2014) 1240-1243.

    48. [48]

      [48] C. Huang, Y. Fu, H. Fu, et al., Highly efficient copper-catalyzed cascade synthesis of quinazoline and quinazolinone derivatives, Chem. Commun. 47(2008) 6333-6335.

    49. [49]

      [49] X. Liu, H. Fu, Y. Jiang, Y. Zhao, A simple and efficient approach to quinazolinones under mild copper-catalyzed conditions, Angew. Chem. Int. Ed. 48(2009) 348-351.

    50. [50]

      [50] X. Yang, H. Liu, H. Fu, et al., Efficient copper-catalyzed synthesis of 4-aminoquinazoline and 2,4-diaminoquinazoline derivatives, Synlett 1(2010) 101-106.

    51. [51]

      [51] V.L. Truong, M. Morrow, Mild and efficient ligand-free copper-catalyzed condensation for the synthesis of quinazolines, Tetrahedron Lett. 51(2010) 758-760.

    52. [52]

      [52] J. Ju, R. Hua, J. Su, Copper-catalyzed three-component one-pot synthesis of quinazolines, Tetrahedron 68(2012) 9364-9370.

    53. [53]

      [53] L. Zhang, J.H. Su, S. Wang, et al., Direct electrochemical imidation of aliphatic aminesvia anodic oxidation, Chem. Commun. 47(2011) 5488-5490.

    54. [54]

      [54] Z. Zhang, J. Su, Z. Zha, et al., Electrochemical synthesis of the aryl a-ketoesters from acetophenones mediated by KI, Chem. Eur. J. 19(2013) 17711-17714.

  • 加载中
    1. [1]

      Liangfeng YangLiang ZengYanping ZhuQiuan WangJinheng Li . Copper-catalyzed photoredox 1,4-amidocyanation of 1,3-enynes with N-amidopyridin-1-ium salts and TMSCN: Facile access to α-amido allenyl nitriles. Chinese Chemical Letters, 2024, 35(11): 109685-. doi: 10.1016/j.cclet.2024.109685

    2. [2]

      Gangsheng LiXiang YuanFu LiuZhihua LiuXujie WangYuanyuan LiuYanmin ChenTingting WangYanan YangPeicheng Zhang . Three-step synthesis of flavanostilbenes with a 2-cyclohepten-1-one core by Cu-mediated [5 + 2] cycloaddition/decarboxylation cascade. Chinese Chemical Letters, 2025, 36(2): 109880-. doi: 10.1016/j.cclet.2024.109880

    3. [3]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

    4. [4]

      Yan-Bo LiYi LiLiang Yin . Copper(Ⅰ)-catalyzed diastereodivergent construction of vicinal P-chiral and C-chiral centers facilitated by dual "soft-soft" interaction. Chinese Chemical Letters, 2024, 35(7): 109294-. doi: 10.1016/j.cclet.2023.109294

    5. [5]

      Shaonan Tian Yu Zhang Qing Zeng Junyu Zhong Hui Liu Lin Xu Jun Yang . Core-shell gold-copper nanoparticles: Evolution of copper shells on gold cores at different gold/copper precursor ratios. Chinese Journal of Structural Chemistry, 2023, 42(11): 100160-100160. doi: 10.1016/j.cjsc.2023.100160

    6. [6]

      Guoliang Liu Zhiqiang Liu Anmin Zheng . Modulation of zeolite surface realizes dynamic copper species redispersion. Chinese Journal of Structural Chemistry, 2024, 43(6): 100308-100308. doi: 10.1016/j.cjsc.2024.100308

    7. [7]

      Luyao Lu Chen Zhu Fei Li Pu Wang Xi Kang Yong Pei Manzhou Zhu . Ligand effects on geometric structures and catalytic activities of atomically precise copper nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(10): 100411-100411. doi: 10.1016/j.cjsc.2024.100411

    8. [8]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    9. [9]

      Ting HuYuxuan GuoYixuan MengZe ZhangJi YuJianxin CaiZhenyu Yang . Uniform lithium deposition induced by copper phthalocyanine additive for durable lithium anode in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108603-. doi: 10.1016/j.cclet.2023.108603

    10. [10]

      Ruilong GengLingzi PengChang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433

    11. [11]

      Jing-Qi TaoShuai LiuTian-Yu ZhangHong XinXu YangXin-Hua DuanLi-Na Guo . Photoinduced copper-catalyzed alkoxyl radical-triggered ring-expansion/aminocarbonylation cascade. Chinese Chemical Letters, 2024, 35(6): 109263-. doi: 10.1016/j.cclet.2023.109263

    12. [12]

      Pingping WangHuixian MiaoKechuan ShengBin WangFan FengXuankun CaiWei HuangDayu Wu . Efficient blue-light-excitable copper(Ⅰ) coordination network phosphors for high-performance white LEDs. Chinese Chemical Letters, 2024, 35(4): 108600-. doi: 10.1016/j.cclet.2023.108600

    13. [13]

      Ling FangSha WangShun LuFengjun YinYujie DaiLin ChangHong Liu . Efficient electroreduction of nitrate via enriched active phases on copper-cobalt oxides. Chinese Chemical Letters, 2024, 35(4): 108864-. doi: 10.1016/j.cclet.2023.108864

    14. [14]

      Yu-Yu TanLin-Heng HeWei-Min He . Copper-mediated assembly of SO2F group via radical fluorine-atom transfer strategy. Chinese Chemical Letters, 2024, 35(9): 109986-. doi: 10.1016/j.cclet.2024.109986

    15. [15]

      Xiaotao JinYanlan WangYingping HuangDi HuangXiang Liu . Percarbonate activation catalyzed by nanoblocks of basic copper molybdate for antibiotics degradation: High performance, degradation pathways and mechanism. Chinese Chemical Letters, 2024, 35(10): 109499-. doi: 10.1016/j.cclet.2024.109499

    16. [16]

      Yuxiang Zhang Jia Zhao Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415

    17. [17]

      Fengxing LiangYongzheng ZhuNannan WangMeiping ZhuHuibing HeYanqiu ZhuPeikang ShenJinliang Zhu . Recent advances in copper-based materials for robust lithium polysulfides adsorption and catalytic conversion. Chinese Chemical Letters, 2024, 35(11): 109461-. doi: 10.1016/j.cclet.2023.109461

    18. [18]

      Mengmeng AoJian WeiChuan-Shu HeHeng ZhangZhaokun XiongYonghui SongBo Lai . Insight into the activation of peroxymonosulfate by N-doped copper-based carbon for efficient degradation of organic pollutants: Synergy of nonradicals. Chinese Chemical Letters, 2025, 36(1): 109882-. doi: 10.1016/j.cclet.2024.109882

    19. [19]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    20. [20]

      Junyi YuYin ChengAnhong CaiXianfeng HuangQingrui Zhang . Synthetic Cu(Ⅲ) from copper plating wastewater for onsite decomplexation of Cu(Ⅱ)- and Ni(Ⅱ)-organic complexes. Chinese Chemical Letters, 2025, 36(2): 110549-. doi: 10.1016/j.cclet.2024.110549

Metrics
  • PDF Downloads(0)
  • Abstract views(743)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return