Citation: Wen-Bo Mu, Yue Zou, Quan-Rui Wang, Andreas Goeke. A novel synthetic route to rac-(Z)-recifeiolide from cyclooctanone and acetaldehyde[J]. Chinese Chemical Letters, ;2015, 26(11): 1393-1396. doi: 10.1016/j.cclet.2015.07.006 shu

A novel synthetic route to rac-(Z)-recifeiolide from cyclooctanone and acetaldehyde

  • Corresponding author: Quan-Rui Wang,  Andreas Goeke, 
  • Received Date: 15 April 2015
    Available Online: 16 June 2015

  • A novel synthetic approach to (±)-Z-recifeiolide 6, a 12-membered-ring lactone which can be selectively isomerized into (E)-recifeiolide, a natural antibiotic product isolated from fungus (Cephalosporium recifei) is reported. The synthesis is accomplished in five steps starting from readily available cyclooctanone and acetaldehyde based on the Lewis acid-catalyzed TMS-directed oxy-2-oxonia-Cope rearrangement. The work represents a novel strategy to assemble related macrolides.
  • 加载中
    1. [1]

      [1] M. Kerschbaum, Ü ber Lactone mit großen Ringen-die Träger des vegetabilischen Moschus-Duftes, Chem. Ber. 60 (1927) 902-909.

    2. [2]

      [2] (a) I. Shiina, Total synthesis of natural 8- and 9-membered lactones: recent advancements in medium-sized ring formation, Chem. Rev. 107 (2007) 239-273; (b) G. Rousseau, Medium ring lactones, Tetrahedron 51 (1995) 2777-2849; (c) D. Poth, P.S. Peram, M. Vences, S. Schulz, Macrolides and alcohols as scent gland constituents of the Madagascan frog mantidactylus femoralis and their intraspecific diversity, J. Nat. Prod. 76 (2013) 1548-1558; (d) A. Parenty, X. Moreau, J.M. Campagne, Macrolactonizations in the total synthesis of natural products, Chem. Rev. 106 (2006) 911-939; (e) A. Parenty, X. Moreau, J.M. Gilles Niel, Campagne, Update 1 of: macrolactonizations in the total synthesis of natural products, Chem. Rev. 113 (2013), PR1- PR40; (f) Z.X. Chen, D.L. Liu, W.Y. Gao, T.J. Zhang, A new macrolide and glycosides from the stem of Sargentodoxa cuneate, Chin. Chem. Lett. 20 (2009) 1339-1341.

    3. [3]

      [3] (a) W. Zhao, Z. Li, J. Sun, A new strategy for efficient synthesis of medium and large ring lactones without high dilution or slow addition, J. Am. Chem. Soc. 135 (2013) 4680-4683; (b) G. Illuminati, L. Mandolini, Ring closure reactions of bifunctional chain molecules, Acc. Chem. Res. 14 (1981) 95-102; (c) A. Gradillas, J. Pé rez-Castells, Macrocyclization by ring-closing metathesis in the total synthesis of natural products: reaction conditions and limitations, Angew. Chem. Int. Ed. 45 (2006) 6086-6101; (d) A. Deiters, S.F. Martin, Synthesis of oxygen- and nitrogen-containing heterocycles by ring-closing metathesis, Chem. Rev. 104 (2004) 2199-2238; (e) C.J. Hou, X.M. Liang, J.P. Wu, D.Q. Wang, Synthesis of macrocyclic lactones with methoxysulfonyl side chain, Chin. Chem. Lett. 19 (2008) 403-405.

    4. [4]

      [4] D.M. Zubrytski, D.G. Kananovich, O.G. Kulinkovich, A highly stereoselective route to medium-ring-sized trans-alkenolides via oxidative fragmentation of bicyclic oxycyclopropane precursors: application to the synthesis of (+)-recifeiolide, Tetrahedron 70 (2014) 2944-2950.

    5. [5]

      [5] (a) Y. Zou, H. Mouhib, W. Stahl, et al., Efficient macrocyclization by a novel oxyoxonia- Cope reaction: synthesis and olfactory properties of new macrocyclic musks, Chem. Eur. J. 18 (2012) 7010-7015; (b) Y. Zou, C. Ding, L. Zhou, et al., Tandem cross-dimerisation/oxonia-Cope reaction of carbonyl compounds to homoallylic esters and lactones, Angew. Chem. Int. Ed. 51 (2012) 5647-5651; (c) L. Zhou, Z. Li, Y. Zou, et al., Tandem nucleophilic addition/oxy-2-azonia-Cope rearrangement for the formation of homoallylic amides and lactams: total synthesis and structural verification of motuporamine G, J. Am. Chem. Soc. 134 (2012) 20009-20012; (d) W. Mu, L. Zhou, Y. Zou, Q. Wang, A. Goeke, Irreversible oxy-2-azonia-Cope rearrangements for the synthesis of functionalized allyl a-amino acid derivatives, Eur. J. Org. Chem. (2014) 2379-2385; (e) Y. Zou, L. Zhou, C. Ding, et al., Novel oxy-oxonia(azonia)-Cope reaction: serendipitous discovery and its application to the synthesis of macrocyclic musks, Chem. Biodivers. 11 (2014) 1608-1628.

    6. [6]

      [6] For isolation and an early synthesis, see: (a) RF. Vesonder, F.H. Stodola, L.J. Wickerham, J.J. Ellis, W.K. Rohwedder, 11- Hydroxy-trans-8-dodecenoic acid lactone, a 12-membered-ring compound from a fungus, Can. J. Chem. 49 (1971) 2029-2032; (b) E.J. Corey, P. Ulrich, J.M. Fitzpatrick, A stereoselective synthesis of (±)-11- hydroxy-trans-8-dodecenoic acid lactone, a naturally occurring macrolide from Cephalosporium recifei, J. Am. Chem. Soc. 98 (1976) 222-224.

    7. [7]

      [7] X. Huang, C. Craita, L. Awad, P. Vogel, Silyl methallylsulfinates: efficient and powerful agents for the chemoselective silylation of alcohols, polyols, phenols and carboxylic acids, Chem. Commun. 10 (2005) 1297-1299.

    8. [8]

      [8] H.H. Wasserman, R.J. Gambale, M.J. Pulwer, Activated carboxylates from the photooxygenation of oxazoles: application to the synthesis of recifeiolide, curvularin and macrolides, Tetrahedron 37 (1981) 4059-4067.

    9. [9]

      [9] J.R. Mahajan, I.S. Resck, Synthesis of (±)-recifeiolide and its homologs via acetylenic lactones, Synth. Commun. 26 (1996) 3809-3819.

    10. [10]

      [10] A. Fuerstner, K. Langemann, Macrocycles by ring-closing metathesis, Synthesis (1997) 792-803.

    11. [11]

      [11] K. Okuma, S. Hirabayashi, M. Ono, K. Shioji, H. Matsuyama, H.J. Bestmann, An efficient synthesis of (R)-(+)-recifeiolide and related macrolides by using enantiomerically pure (R)-(-)-5-methyl-2,2,2-triphenyl-1,2λ5-oxaphospholane, Tetrahedron 54 (1998) 4243-4250.

    12. [12]

      [12] I. Fleming, A. Barbero, D. Walter, Stereochemical control in organic synthesis using silicon-containing compounds, Chem. Rev. 97 (1997) 2063-2192.

    13. [13]

      [13] L.E. Overman, A. Castaneda, T.A. Blumenkopf, Acetal-initiated cyclizations of vinylsilanes. A general synthesis of allylically unsaturated oxacyclic, J. Am. Chem. Soc. 108 (1986) 1303-1304.

  • 加载中
    1. [1]

      Yulong ShiFenbei ChenMengyuan WuXin ZhangRunze MengKun WangYan WangYuheng MeiQionglu DuanYinghong LiRongmei GaoYuhuan LiHongbin DengJiandong JiangYanxiang WangDanqing Song . Chemical construction and anti-HCoV-OC43 evaluation of novel 10,12-disubstituted aloperine derivatives as dual cofactor inhibitors of TMPRSS2 and SR-B1. Chinese Chemical Letters, 2024, 35(5): 108792-. doi: 10.1016/j.cclet.2023.108792

    2. [2]

      Huiju CaoLei Shi . sp1-Hybridized linear and cyclic carbon chain. Chinese Chemical Letters, 2025, 36(4): 110466-. doi: 10.1016/j.cclet.2024.110466

    3. [3]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    4. [4]

      Huimin Luan Qinming Wu Jianping Wu Xiangju Meng Feng-Shou Xiao . Templates for the synthesis of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100252-100252. doi: 10.1016/j.cjsc.2024.100252

    5. [5]

      Hang Wang Qi Wang Chuan-De Wu . Continuous synthesis of ammonia. Chinese Journal of Structural Chemistry, 2025, 44(3): 100437-100437. doi: 10.1016/j.cjsc.2024.100437

    6. [6]

      Zhaojun Liu Zerui Mu Chuanbo Gao . Alloy nanocrystals: Synthesis paradigms and implications. Chinese Journal of Structural Chemistry, 2023, 42(11): 100156-100156. doi: 10.1016/j.cjsc.2023.100156

    7. [7]

      Zhenhao WangYuliang TangRuyu LiShuai TianYu TangDehai Li . Bioinspired synthesis of cochlearol B and ganocin A. Chinese Chemical Letters, 2024, 35(7): 109247-. doi: 10.1016/j.cclet.2023.109247

    8. [8]

      Hui JinQin CaiPeiwen LiuYan ChenDerong WangWeiping ZhuYufang XuXuhong Qian . Multistep continuous flow synthesis of Erlotinib. Chinese Chemical Letters, 2024, 35(4): 108721-. doi: 10.1016/j.cclet.2023.108721

    9. [9]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

    10. [10]

      Mei PengWei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899

    11. [11]

      Liyong DingZhenhua PanQian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125

    12. [12]

      Xiaoyu ChenJiahao HuJingyi LinHaiyang HuangChangqing YeHongli Bao . Biisoindolylidene solvatochromic fluorophores: Synthesis and photophysical properties. Chinese Chemical Letters, 2025, 36(2): 109923-. doi: 10.1016/j.cclet.2024.109923

    13. [13]

      Tengfei XuanXinyu ZhangWei HanYidong HuangWeiwu Ren . Total synthesis of (+)-taberdicatine B and (+)-tabernabovine B. Chinese Chemical Letters, 2025, 36(2): 109816-. doi: 10.1016/j.cclet.2024.109816

    14. [14]

      Yuqing LiuYu YangYuhan EChanglong PangDi CuiAng Li . Insight into microbial synthesis of metal nanomaterials and their environmental applications: Exploration for enhanced controllable synthesis. Chinese Chemical Letters, 2024, 35(11): 109651-. doi: 10.1016/j.cclet.2024.109651

    15. [15]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    16. [16]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    17. [17]

      Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472

    18. [18]

      Peng ChenLijuan LiangYufei ZhuZhimin XingZhenhua JiaTeck-Peng Loh . Strategies for constructing seven-membered rings: Applications in natural product synthesis. Chinese Chemical Letters, 2024, 35(6): 109229-. doi: 10.1016/j.cclet.2023.109229

    19. [19]

      Kebo XieQian ZhangFei YeJungui Dai . A multi-enzymatic cascade reaction for the synthesis of bioactive C-oligosaccharides. Chinese Chemical Letters, 2024, 35(6): 109028-. doi: 10.1016/j.cclet.2023.109028

    20. [20]

      Hao DengYuxin HuiChao ZhangQi ZhouQiang LiHao DuDerek HaoGuoxiang YangQi Wang . MXene−derived quantum dots based photocatalysts: Synthesis, application, prospects, and challenges. Chinese Chemical Letters, 2024, 35(6): 109078-. doi: 10.1016/j.cclet.2023.109078

Metrics
  • PDF Downloads(0)
  • Abstract views(762)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return