Citation: Guang-Ming Nan, Wei Liu. Metal-free one-pot synthesis of quinoline-2,4-carboxylates via a molecular iodine-catalyzed three-component reaction of arylamines, ethyl glyoxylate, and α-ketoesters[J]. Chinese Chemical Letters, ;2015, 26(10): 1289-1292. doi: 10.1016/j.cclet.2015.06.015 shu

Metal-free one-pot synthesis of quinoline-2,4-carboxylates via a molecular iodine-catalyzed three-component reaction of arylamines, ethyl glyoxylate, and α-ketoesters

  • Corresponding author: Guang-Ming Nan, 
  • Received Date: 3 April 2015
    Available Online: 28 May 2015

    Fund Project: The work was financially supported by the Opening Project of Key Laboratory at Universities of Education Department of Xinjiang Uygur Autonomous Region (No. 2014YSHXZD01). (No. 2014YSHXZD01)

  • A simple and metal-free method has been developed for the construction of quinoline-2, 4-carboxylates under mild conditions via a molecular iodine-catalyzed three-component tandem reaction of arylamines, ethyl glyoxylate, and α-ketoesters. The present protocol provides a convenient and attractive approach to various quinoline-2, 4-carboxylates in moderate to good yields with excellent functional group tolerance.
  • 加载中
    1. [1]

      [1] A. Dondoni, A. Massi, Design and synthesis of new classes of heterocyclic Cglycoconjugates and carbon-linked sugar and heterocyclic amino acids by asymmetric multicomponent reactions (AMCRs), Acc. Chem. Res. 39(2006) 451-463.

    2. [2]

      [2] B.B. Touré, D.G. Hall, Natural product synthesis using multicomponent reaction strategies, Chem. Rev. 109(2009) 4439-4486.

    3. [3]

      [3] V. Estevez, M. Villacampa, J.C. Menendez, Multicomponent reactions for the synthesis of pyrroles, Chem. Soc. Rev. 39(2010) 4402-4421.

    4. [4]

      [4] S. Brauch, S.S. Berkela, B. Westermann, Higher-order multicomponent reactions:beyond four reactants, Chem. Soc. Rev. 42(2013) 4948-4962.

    5. [5]

      [5] N. Christinat, R. Scopelliti, K. Severin, Multicomponent assembly of boronic acid based macrocycles and cages, Angew. Chem. Int. Ed. 47(2008) 1848-1852.

    6. [6]

      [6] E. Ruijter, R. Scheffelaar, R.V. Orru, Multicomponent reaction design in the quest for molecular complexity and diversity, Angew. Chem. Int. Ed. 50(2011) 6234-6246.

    7. [7]

      [7] C. Portela, C.M.M. Afonso, M.M.M. Pinta, M.J. Ramos, Definition of an electronic profile of compounds with inhibitory activity against hematin aggregation in malaria parasite, Bioorg. Med. Chem. 12(2004) 3313-3321.

    8. [8]

      [8] A.A. Joshi, C.L. Viswanathan, Docking studies and development of novel 5-heteroarylamino-2,4-diamino-8-chloropyrimido-[4,5-b]quinolines as potential antimalarials, Bioorg. Med. Chem. Lett. 16(2006) 2613-2617.

    9. [9]

      [9] P. Narender, U. Srinivas, M. Ravinder, et al., Synthesis of multisubstituted quinolines from Baylis-Hillman adducts obtained from substituted 2-chloronicotinaldehydes and their antimicrobial activity, Bioorg. Med. Chem. 14(2006) 4600-4609.

    10. [10]

      [10] S.W. Elmore, M.J. Coghlan, D.D. Anderson, et al., Nonsteroidal selective glucocorticoid modulators:the effect of C-5 alkyl substitution on the transcriptional activation/repression profile of 2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1] benzopyrano[3,4-f] quinolines, J. Med. Chem. 44(2001) 4481-4491.

    11. [11]

      [11] S. Vangapamdu, M. Jain, R. Jain, S. Kaur, P.P. Singh, Ring-substituted quinolines as potential anti-tuberculosis agents, Bioorg. Med. Chem. 12(2004) 2501-2508.

    12. [12]

      [12] F. Zouhiri, D. Desmaele, J. D'Angelo, et al., HIV-1 replication inhibitors of the styrylquinoline class:incorporation of a masked diketo acid pharmacophore, Tetrahedron Lett. 42(2001) 8189-8192.

    13. [13]

      [13] A. Perzyna, F. Klupsch, R. Houssin, et al., New benzo[5,6] pyrrolizino[1,2-b]quinolines as cytotoxic agents, Bioorg. Med. Chem. Lett. 14(2004) 2363-2365.

    14. [14]

      [14] L. Kaczmarek, W. Peczynska-Czoch, J. Osiadacz, et al., Catalytic mechanism of KDO8P synthase:synthesis and evaluation of a putative reaction intermediate, Bioorg. Med. Chem. Lett. 7(1999) 2457-2462.

    15. [15]

      [15] C.N. Carrigan, R.D. Bartlett, C.S. Esslinger, et al., Synthesis and in vitro pharmacology of substituted quinoline-2,4-dicarboxylic acids as inhibitors of vesicular glutamate transport, J. Med. Chem. 45(2002) 2260-2276.

    16. [16]

      [16] C.N. Carrigan, C.S. Esslinger, R.D. Bartlett, R.J. Bridges, C.M. Thompson, In search of new chemical entities with spermicidal and anti-HIV activities, Bioorg. Med. Chem. 7(1999) 2607-2612.

    17. [17]

      [17] E.J. Corey, A. Tramontano, Total synthesis of the auinonoid alcohol dehydrogenase coenzyme (1) of methylotrophic bacteria, J. Am. Chem. Soc. 103(1981) 5599-5600.

    18. [18]

      [18] Y. Laras, V. Hugues, Y. Chandrasekaran, et al., Synthesis of quinoline dicarboxylic esters as biocompatible fluorescent tags, J. Org. Chem. 77(2012) 8294-8302.

    19. [19]

      [19] S. Itoh, Y. Fukui, S. Haranou, et al., Synthesis and characterization of dimethyl 9,10-dihydro-9,10-dioxobenzo[f]quinoline-2,4-dicarboxylate. effect of the pyrrole nucleus on the reactivity of coenzyme PQQ, J. Org. Chem. 57(1992) 4452-4457.

    20. [20]

      [20] R.W. Carling, P.D. Leeson, A.M. Moseley, et al., 2-Carboxytetrahydroquinolines. conformational and stereochemical requirements for antagonism of the glycine site on the N-methyl-D-aspartate (NMDA) receptor, J. Med. Chem. 35(1992) 1942-1953.

    21. [21]

      [21] S. Itoh, J. Kato, T. Inoue, et al., Syntheses of pyrroloquinoline quinone derivatives:model compounds of a novel coenzyme PQQ (methoxatin), Synthesis (1987) 1067-1071.

    22. [22]

      [22] F. Palacios, J. Vicario, J.M. de los Santos, D. Aparicio, Selective 1,2- vs 1,4-addition of N-arylphosphazenes to α,β-unsaturated α-ketoesters. synthesis of quinolinecarboxylates, Heterocycles 70(2006) 261-270.

    23. [23]

      [23] W. Wei, J. Wen, D. Yang, et al., Iron-catalyzed three-component tandem process:a novel and convenient synthetic route to quinoline-2,4-dicarboxylates from arylamines, glyoxylic esters, and α-ketoesters, Tetrahedron 69(2013) 10747-10751.

    24. [24]

      [24] K. Zmitek, M. Zupan, S. Stavber, J. Iskra, The effect of iodine on the peroxidation of carbonyl compounds, J. Org. Chem. 72(2007) 6534-6540.

    25. [25]

      [25] R. Varala, S. Nuvula, S.R. Adapa, Molecular iodine-catalyzed facile procedure for Nboc protection of amines, J. Org. Chem. 71(2006) 8283-8286.

    26. [26]

      [26] K. Zmitek, M. Zupan, S. Stavber, J. Iskra, Iodine as a catalyst for efficient conversion of ketones to gem-dihydroperoxides by aqueous hydrogen peroxide, Org. Lett. 8(2006) 2491-2944.

    27. [27]

      [27] M. Jereb, D. Vražič, M. Zupan, Iodine-catalyzed transformation of molecules containing oxygen functional groups, Tetrahedron 67(2011) 1355-1387.

    28. [28]

      [28] T. Nobuta, N. Tada, A. Fujiya, et al., Molecular iodine catalyzed cross-dehydrogenative coupling reaction between two sp3 C-H bonds using hydrogen peroxide, Org. Lett. 15(2013) 574-577.

    29. [29]

      [29] X.S. Wang, Q. Li, C.S. Yao, S.J. Tu, An efficient method for the synthesis of benzo[f]quinoline and benzo[a]phenanthridine derivatives catalyzed by iodine by a three-component reaction of arenecarbaldehyde, naphthalen-2-amine, and cyclic ketone, Eur. J. Org. Chem. 20(2008) 3513-3518.

    30. [30]

      [30] D. Kataki, P. Phukan, Iodine-catalyzed one-pot three-component synthesis of homoallyl benzyl ethers from aldehydes, Tetrahedron Lett. 50(2009) 1958-1960.

    31. [31]

      [31] J. Jaratjaroonphong, S. Krajangsri, V. Reutrakul, Iodine-catalyzed, one-pot, threecomponent aza-Friedel-Crafts reaction of electron-rich arenes with aldehyde/carbamate combinations, Tetrahedron Lett. 53(2012) 2476-2479.

    32. [32]

      [32] K.P. Kumar, S. Satyanarayana, P.L. Reddy, et al., Iodine-catalyzed three-component one-pot synthesis of naphthopyranopyrimidines under solvent-free conditions, Tetrahedron Lett. 53(2012) 1738-1741.

    33. [33]

      [33] B. Dai, Y. Duan, X. Liu, et al., Iodine catalyzed one-pot multi-component reaction to CF3-containing spiro[indene-2,30-piperidine] derivatives, J. Fluor. Chem. 133(2012) 127-133.

    34. [34]

      [34] B.Q. Zhang, Y. Luo, Y.H. He, Z. Guan, Highly efficient synthesis of polysubstituted 1,2-dihydroquinolines via cascade reaction of α-ketoesters with arylamines mediated by iodine, Tetrahedron 70(2014) 1961-1966.

    35. [35]

      [35] A. Alizadeh, J. Mokhtari, Synthesis of spiro[indoline-3,40-pyrrolo[1,2-a]quinoxalin]-2-one catalyzed by molecular iodine, Tetrahedron 69(2013) 6313-6316.

    36. [36]

      [36] A. Alizadeh, J. Mokhtari, Synthesis of 4-(1,3-dioxo-2,3-dihydro-1H-2-indenyl) substituted 1-benzylpyrrole-3-carboxylates via a tandem four-component reaction, C.R. Chimie 16(2013) 105-108.

    37. [37]

      [37] X.F. Lin, S.L. Cui, Y.G. Wang, Molecular iodine-catalyzed one-pot synthesis of substituted quinolines from imines and aldehydes, Tetrahedron Lett. 47(2006) 3127-3130.

  • 加载中
    1. [1]

      Jiajun LuZhehui LiaoTongxiang CaoShifa Zhu . Synergistic Brønsted/Lewis acid catalyzed atroposelective synthesis of aryl-β-naphthol. Chinese Chemical Letters, 2025, 36(1): 109842-. doi: 10.1016/j.cclet.2024.109842

    2. [2]

      Bowen WangLongwu SunQianqian CaoXinzhi LiJianai ChenShizhao WangMiaolin KeFener Chen . Cu-catalyzed three-component CSP coupling for the synthesis of trisubstituted allenyl phosphorothioates. Chinese Chemical Letters, 2024, 35(12): 109617-. doi: 10.1016/j.cclet.2024.109617

    3. [3]

      Huixin ChenChen ZhaoHongjun YueGuiming ZhongXiang HanLiang YinDing Chen . Unraveling the reaction mechanism of high reversible capacity CuP2/C anode with native oxidation POx component for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109650-. doi: 10.1016/j.cclet.2024.109650

    4. [4]

      Yifan LIUZhan ZHANGRongmei ZHUZiming QIUHuan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008

    5. [5]

      Jindian DuanXiaojuan DingPui Ying ChoyBinyan XuLuchao LiHong QinZheng FangFuk Yee KwongKai Guo . Oxidative spirolactonisation for modular access of γ-spirolactones via a radical tandem annulation pathway. Chinese Chemical Letters, 2024, 35(10): 109565-. doi: 10.1016/j.cclet.2024.109565

    6. [6]

      Pengcheng SuShizheng ChenZhihong YangNingning ZhongChenzi JiangWanbin Li . Vapor-phase postsynthetic amination of hypercrosslinked polymers for efficient iodine capture. Chinese Chemical Letters, 2024, 35(9): 109357-. doi: 10.1016/j.cclet.2023.109357

    7. [7]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    8. [8]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    9. [9]

      Yuhao Guo Na Li Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320

    10. [10]

      Yajun HouChuanzheng ZhuQiang WangXiaomeng ZhaoKun LuoZongshuai GongZhihao Yuan . ~2.5 nm pores in carbon-based cathode promise better zinc-iodine batteries. Chinese Chemical Letters, 2024, 35(5): 108697-. doi: 10.1016/j.cclet.2023.108697

    11. [11]

      Xinyi CaoYucheng JinHailong WangXu DingXiaolin LiuBaoqiu YuXiaoning ZhanJianzhuang Jiang . A tetraaldehyde-derived porous organic cage and covalent organic frameworks: Syntheses, structures, and iodine vapor capture. Chinese Chemical Letters, 2024, 35(9): 109201-. doi: 10.1016/j.cclet.2023.109201

    12. [12]

      Dongying FuLin PanYanli MaYue Zhang . Bilayered Dion–Jacobson lead-iodine hybrid perovskite with aromatic spacer for broadband photodetection. Chinese Chemical Letters, 2025, 36(2): 109621-. doi: 10.1016/j.cclet.2024.109621

    13. [13]

      Muhammad Riaz Rakesh Kumar Gupta Di Sun Mohammad Azam Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427

    14. [14]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

    15. [15]

      Cheng-Da ZhaoHuan YaoShi-Yao LiFangfang DuLi-Li WangLiu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879

    16. [16]

      Yanwei DuanQing Yang . Molecular targets and their application examples for interrupting chitin biosynthesis. Chinese Chemical Letters, 2025, 36(4): 109905-. doi: 10.1016/j.cclet.2024.109905

    17. [17]

      Zhimin SunXin-Hui GuoYue ZhaoQing-Yu MengLi-Juan XingHe-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162

    18. [18]

      Li LinSong-Lin TianZhen-Yu HuYu ZhangLi-Min ChangJia-Jun WangWan-Qiang LiuQing-Shuang WangFang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802

    19. [19]

      Minghao HuTianci XieYuqiang HuLongjie LiTing WangTongbo Wu . Allosteric DNAzyme-based encoder for molecular information transfer. Chinese Chemical Letters, 2024, 35(7): 109232-. doi: 10.1016/j.cclet.2023.109232

    20. [20]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

Metrics
  • PDF Downloads(0)
  • Abstract views(707)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return