Citation:
Guang-Ming Nan, Wei Liu. Metal-free one-pot synthesis of quinoline-2,4-carboxylates via a molecular iodine-catalyzed three-component reaction of arylamines, ethyl glyoxylate, and α-ketoesters[J]. Chinese Chemical Letters,
;2015, 26(10): 1289-1292.
doi:
10.1016/j.cclet.2015.06.015
-
A simple and metal-free method has been developed for the construction of quinoline-2, 4-carboxylates under mild conditions via a molecular iodine-catalyzed three-component tandem reaction of arylamines, ethyl glyoxylate, and α-ketoesters. The present protocol provides a convenient and attractive approach to various quinoline-2, 4-carboxylates in moderate to good yields with excellent functional group tolerance.
-
-
-
[1]
[1] A. Dondoni, A. Massi, Design and synthesis of new classes of heterocyclic Cglycoconjugates and carbon-linked sugar and heterocyclic amino acids by asymmetric multicomponent reactions (AMCRs), Acc. Chem. Res. 39(2006) 451-463.
-
[2]
[2] B.B. Touré, D.G. Hall, Natural product synthesis using multicomponent reaction strategies, Chem. Rev. 109(2009) 4439-4486.
-
[3]
[3] V. Estevez, M. Villacampa, J.C. Menendez, Multicomponent reactions for the synthesis of pyrroles, Chem. Soc. Rev. 39(2010) 4402-4421.
-
[4]
[4] S. Brauch, S.S. Berkela, B. Westermann, Higher-order multicomponent reactions:beyond four reactants, Chem. Soc. Rev. 42(2013) 4948-4962.
-
[5]
[5] N. Christinat, R. Scopelliti, K. Severin, Multicomponent assembly of boronic acid based macrocycles and cages, Angew. Chem. Int. Ed. 47(2008) 1848-1852.
-
[6]
[6] E. Ruijter, R. Scheffelaar, R.V. Orru, Multicomponent reaction design in the quest for molecular complexity and diversity, Angew. Chem. Int. Ed. 50(2011) 6234-6246.
-
[7]
[7] C. Portela, C.M.M. Afonso, M.M.M. Pinta, M.J. Ramos, Definition of an electronic profile of compounds with inhibitory activity against hematin aggregation in malaria parasite, Bioorg. Med. Chem. 12(2004) 3313-3321.
-
[8]
[8] A.A. Joshi, C.L. Viswanathan, Docking studies and development of novel 5-heteroarylamino-2,4-diamino-8-chloropyrimido-[4,5-b]quinolines as potential antimalarials, Bioorg. Med. Chem. Lett. 16(2006) 2613-2617.
-
[9]
[9] P. Narender, U. Srinivas, M. Ravinder, et al., Synthesis of multisubstituted quinolines from Baylis-Hillman adducts obtained from substituted 2-chloronicotinaldehydes and their antimicrobial activity, Bioorg. Med. Chem. 14(2006) 4600-4609.
-
[10]
[10] S.W. Elmore, M.J. Coghlan, D.D. Anderson, et al., Nonsteroidal selective glucocorticoid modulators:the effect of C-5 alkyl substitution on the transcriptional activation/repression profile of 2,5-dihydro-10-methoxy-2,2,4-trimethyl-1H-[1] benzopyrano[3,4-f] quinolines, J. Med. Chem. 44(2001) 4481-4491.
-
[11]
[11] S. Vangapamdu, M. Jain, R. Jain, S. Kaur, P.P. Singh, Ring-substituted quinolines as potential anti-tuberculosis agents, Bioorg. Med. Chem. 12(2004) 2501-2508.
-
[12]
[12] F. Zouhiri, D. Desmaele, J. D'Angelo, et al., HIV-1 replication inhibitors of the styrylquinoline class:incorporation of a masked diketo acid pharmacophore, Tetrahedron Lett. 42(2001) 8189-8192.
-
[13]
[13] A. Perzyna, F. Klupsch, R. Houssin, et al., New benzo[5,6] pyrrolizino[1,2-b]quinolines as cytotoxic agents, Bioorg. Med. Chem. Lett. 14(2004) 2363-2365.
-
[14]
[14] L. Kaczmarek, W. Peczynska-Czoch, J. Osiadacz, et al., Catalytic mechanism of KDO8P synthase:synthesis and evaluation of a putative reaction intermediate, Bioorg. Med. Chem. Lett. 7(1999) 2457-2462.
-
[15]
[15] C.N. Carrigan, R.D. Bartlett, C.S. Esslinger, et al., Synthesis and in vitro pharmacology of substituted quinoline-2,4-dicarboxylic acids as inhibitors of vesicular glutamate transport, J. Med. Chem. 45(2002) 2260-2276.
-
[16]
[16] C.N. Carrigan, C.S. Esslinger, R.D. Bartlett, R.J. Bridges, C.M. Thompson, In search of new chemical entities with spermicidal and anti-HIV activities, Bioorg. Med. Chem. 7(1999) 2607-2612.
-
[17]
[17] E.J. Corey, A. Tramontano, Total synthesis of the auinonoid alcohol dehydrogenase coenzyme (1) of methylotrophic bacteria, J. Am. Chem. Soc. 103(1981) 5599-5600.
-
[18]
[18] Y. Laras, V. Hugues, Y. Chandrasekaran, et al., Synthesis of quinoline dicarboxylic esters as biocompatible fluorescent tags, J. Org. Chem. 77(2012) 8294-8302.
-
[19]
[19] S. Itoh, Y. Fukui, S. Haranou, et al., Synthesis and characterization of dimethyl 9,10-dihydro-9,10-dioxobenzo[f]quinoline-2,4-dicarboxylate. effect of the pyrrole nucleus on the reactivity of coenzyme PQQ, J. Org. Chem. 57(1992) 4452-4457.
-
[20]
[20] R.W. Carling, P.D. Leeson, A.M. Moseley, et al., 2-Carboxytetrahydroquinolines. conformational and stereochemical requirements for antagonism of the glycine site on the N-methyl-D-aspartate (NMDA) receptor, J. Med. Chem. 35(1992) 1942-1953.
-
[21]
[21] S. Itoh, J. Kato, T. Inoue, et al., Syntheses of pyrroloquinoline quinone derivatives:model compounds of a novel coenzyme PQQ (methoxatin), Synthesis (1987) 1067-1071.
-
[22]
[22] F. Palacios, J. Vicario, J.M. de los Santos, D. Aparicio, Selective 1,2- vs 1,4-addition of N-arylphosphazenes to α,β-unsaturated α-ketoesters. synthesis of quinolinecarboxylates, Heterocycles 70(2006) 261-270.
-
[23]
[23] W. Wei, J. Wen, D. Yang, et al., Iron-catalyzed three-component tandem process:a novel and convenient synthetic route to quinoline-2,4-dicarboxylates from arylamines, glyoxylic esters, and α-ketoesters, Tetrahedron 69(2013) 10747-10751.
-
[24]
[24] K. Zmitek, M. Zupan, S. Stavber, J. Iskra, The effect of iodine on the peroxidation of carbonyl compounds, J. Org. Chem. 72(2007) 6534-6540.
-
[25]
[25] R. Varala, S. Nuvula, S.R. Adapa, Molecular iodine-catalyzed facile procedure for Nboc protection of amines, J. Org. Chem. 71(2006) 8283-8286.
-
[26]
[26] K. Zmitek, M. Zupan, S. Stavber, J. Iskra, Iodine as a catalyst for efficient conversion of ketones to gem-dihydroperoxides by aqueous hydrogen peroxide, Org. Lett. 8(2006) 2491-2944.
-
[27]
[27] M. Jereb, D. Vražič, M. Zupan, Iodine-catalyzed transformation of molecules containing oxygen functional groups, Tetrahedron 67(2011) 1355-1387.
-
[28]
[28] T. Nobuta, N. Tada, A. Fujiya, et al., Molecular iodine catalyzed cross-dehydrogenative coupling reaction between two sp3 C-H bonds using hydrogen peroxide, Org. Lett. 15(2013) 574-577.
-
[29]
[29] X.S. Wang, Q. Li, C.S. Yao, S.J. Tu, An efficient method for the synthesis of benzo[f]quinoline and benzo[a]phenanthridine derivatives catalyzed by iodine by a three-component reaction of arenecarbaldehyde, naphthalen-2-amine, and cyclic ketone, Eur. J. Org. Chem. 20(2008) 3513-3518.
-
[30]
[30] D. Kataki, P. Phukan, Iodine-catalyzed one-pot three-component synthesis of homoallyl benzyl ethers from aldehydes, Tetrahedron Lett. 50(2009) 1958-1960.
-
[31]
[31] J. Jaratjaroonphong, S. Krajangsri, V. Reutrakul, Iodine-catalyzed, one-pot, threecomponent aza-Friedel-Crafts reaction of electron-rich arenes with aldehyde/carbamate combinations, Tetrahedron Lett. 53(2012) 2476-2479.
-
[32]
[32] K.P. Kumar, S. Satyanarayana, P.L. Reddy, et al., Iodine-catalyzed three-component one-pot synthesis of naphthopyranopyrimidines under solvent-free conditions, Tetrahedron Lett. 53(2012) 1738-1741.
-
[33]
[33] B. Dai, Y. Duan, X. Liu, et al., Iodine catalyzed one-pot multi-component reaction to CF3-containing spiro[indene-2,30-piperidine] derivatives, J. Fluor. Chem. 133(2012) 127-133.
-
[34]
[34] B.Q. Zhang, Y. Luo, Y.H. He, Z. Guan, Highly efficient synthesis of polysubstituted 1,2-dihydroquinolines via cascade reaction of α-ketoesters with arylamines mediated by iodine, Tetrahedron 70(2014) 1961-1966.
-
[35]
[35] A. Alizadeh, J. Mokhtari, Synthesis of spiro[indoline-3,40-pyrrolo[1,2-a]quinoxalin]-2-one catalyzed by molecular iodine, Tetrahedron 69(2013) 6313-6316.
-
[36]
[36] A. Alizadeh, J. Mokhtari, Synthesis of 4-(1,3-dioxo-2,3-dihydro-1H-2-indenyl) substituted 1-benzylpyrrole-3-carboxylates via a tandem four-component reaction, C.R. Chimie 16(2013) 105-108.
-
[37]
[37] X.F. Lin, S.L. Cui, Y.G. Wang, Molecular iodine-catalyzed one-pot synthesis of substituted quinolines from imines and aldehydes, Tetrahedron Lett. 47(2006) 3127-3130.
-
[1]
-
-
-
[1]
Jiajun Lu , Zhehui Liao , Tongxiang Cao , Shifa Zhu . Synergistic Brønsted/Lewis acid catalyzed atroposelective synthesis of aryl-β-naphthol. Chinese Chemical Letters, 2025, 36(1): 109842-. doi: 10.1016/j.cclet.2024.109842
-
[2]
Bowen Wang , Longwu Sun , Qianqian Cao , Xinzhi Li , Jianai Chen , Shizhao Wang , Miaolin Ke , Fener Chen . Cu-catalyzed three-component CSP coupling for the synthesis of trisubstituted allenyl phosphorothioates. Chinese Chemical Letters, 2024, 35(12): 109617-. doi: 10.1016/j.cclet.2024.109617
-
[3]
Huixin Chen , Chen Zhao , Hongjun Yue , Guiming Zhong , Xiang Han , Liang Yin , Ding Chen . Unraveling the reaction mechanism of high reversible capacity CuP2/C anode with native oxidation POx component for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109650-. doi: 10.1016/j.cclet.2024.109650
-
[4]
Yifan LIU , Zhan ZHANG , Rongmei ZHU , Ziming QIU , Huan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008
-
[5]
Jindian Duan , Xiaojuan Ding , Pui Ying Choy , Binyan Xu , Luchao Li , Hong Qin , Zheng Fang , Fuk Yee Kwong , Kai Guo . Oxidative spirolactonisation for modular access of γ-spirolactones via a radical tandem annulation pathway. Chinese Chemical Letters, 2024, 35(10): 109565-. doi: 10.1016/j.cclet.2024.109565
-
[6]
Pengcheng Su , Shizheng Chen , Zhihong Yang , Ningning Zhong , Chenzi Jiang , Wanbin Li . Vapor-phase postsynthetic amination of hypercrosslinked polymers for efficient iodine capture. Chinese Chemical Letters, 2024, 35(9): 109357-. doi: 10.1016/j.cclet.2023.109357
-
[7]
Fang-Yuan Chen , Wen-Chao Geng , Kang Cai , Dong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161
-
[8]
Cheng Guo , Xiaoxiao Zhang , Xiujuan Hong , Yiqiu Hu , Lingna Mao , Kezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867
-
[9]
Yuhao Guo , Na Li , Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320
-
[10]
Yajun Hou , Chuanzheng Zhu , Qiang Wang , Xiaomeng Zhao , Kun Luo , Zongshuai Gong , Zhihao Yuan . ~2.5 nm pores in carbon-based cathode promise better zinc-iodine batteries. Chinese Chemical Letters, 2024, 35(5): 108697-. doi: 10.1016/j.cclet.2023.108697
-
[11]
Xinyi Cao , Yucheng Jin , Hailong Wang , Xu Ding , Xiaolin Liu , Baoqiu Yu , Xiaoning Zhan , Jianzhuang Jiang . A tetraaldehyde-derived porous organic cage and covalent organic frameworks: Syntheses, structures, and iodine vapor capture. Chinese Chemical Letters, 2024, 35(9): 109201-. doi: 10.1016/j.cclet.2023.109201
-
[12]
Dongying Fu , Lin Pan , Yanli Ma , Yue Zhang . Bilayered Dion–Jacobson lead-iodine hybrid perovskite with aromatic spacer for broadband photodetection. Chinese Chemical Letters, 2025, 36(2): 109621-. doi: 10.1016/j.cclet.2024.109621
-
[13]
Muhammad Riaz , Rakesh Kumar Gupta , Di Sun , Mohammad Azam , Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427
-
[14]
Caihong Mao , Yanfeng He , Xiaohan Wang , Yan Cai , Xiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362
-
[15]
Cheng-Da Zhao , Huan Yao , Shi-Yao Li , Fangfang Du , Li-Li Wang , Liu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879
-
[16]
Yanwei Duan , Qing Yang . Molecular targets and their application examples for interrupting chitin biosynthesis. Chinese Chemical Letters, 2025, 36(4): 109905-. doi: 10.1016/j.cclet.2024.109905
-
[17]
Zhimin Sun , Xin-Hui Guo , Yue Zhao , Qing-Yu Meng , Li-Juan Xing , He-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162
-
[18]
Li Lin , Song-Lin Tian , Zhen-Yu Hu , Yu Zhang , Li-Min Chang , Jia-Jun Wang , Wan-Qiang Liu , Qing-Shuang Wang , Fang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802
-
[19]
Minghao Hu , Tianci Xie , Yuqiang Hu , Longjie Li , Ting Wang , Tongbo Wu . Allosteric DNAzyme-based encoder for molecular information transfer. Chinese Chemical Letters, 2024, 35(7): 109232-. doi: 10.1016/j.cclet.2023.109232
-
[20]
Chuan-Zhi Ni , Ruo-Ming Li , Fang-Qi Zhang , Qu-Ao-Wei Li , Yuan-Yuan Zhu , Jie Zeng , Shuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(707)
- HTML views(2)