Citation: Hui Wang, Jun-Qiu Li, Li-Shan Zhou, Jun Liu, Juan Li, Hong-Mei Qu. Palladium-catalyzed synthesis of 1,2,3,4-tetraalkyl-1,4-diarylbutadienes by cross-coupling of zirconacyclopentadienes with aryl iodides[J]. Chinese Chemical Letters, ;2015, 26(10): 1303-1306. doi: 10.1016/j.cclet.2015.06.012 shu

Palladium-catalyzed synthesis of 1,2,3,4-tetraalkyl-1,4-diarylbutadienes by cross-coupling of zirconacyclopentadienes with aryl iodides

  • Corresponding author: Hong-Mei Qu, 
  • Received Date: 7 April 2015
    Available Online: 25 May 2015

    Fund Project:

  • A novelmethod for the synthesis of 1, 2, 3, 4-tetraalkyl-1, 4-diarylbutadienes was developed via palladiumcatalyzed cross-coupling of zirconacyclopentadienes with aryl iodides. Equivalent of CuCl was introduced to promote the reaction. The desired products were obtained in good to excellent yields and several of them were reported for the first time.
  • 加载中
    1. [1]

      [1] (a) P.F.H. Schwab, J.R. Smith, J. Michl, Synthesis and properties of molecular rods. 2. Zig-Zag rods, Chem. Rev. 105(2005) 1197-1279;

    2. [2]

      (b) H. Meier, Conjugated oligomers with terminal donor-acceptor substitution, Angew. Chem. Int. Ed. 44(2005) 2482-2506;

    3. [3]

      (c) L.R. Dalton, P.A. Sullivan, D.H. Bale, Electric field poled organic electro-optic materials:state of the art and future prospects, Chem. Rev. 110(2010) 25-55.

    4. [4]

      [2] J.H. Kim, S. Noh, K. Kim, et al., Blue light emitting diode with1,1,4,4-tetraphenyl-1,3-butadiene (TPB), Synth. Met. 117(2001) 227-228.

    5. [5]

      [3] T. Suzuki, H. Higuchi, M. Ohkita, et al., Dual-mode electrochromism switched by proton transfer:dynamic redox properties of bis(diarylmethylenium)-type dyes, Chem. Commun. (2001) 1574-1575.

    6. [6]

      [4] R. Davis, V.A. Mallia, S. Das, Reversible photochemical phase transition behavior of alkoxy-cyano-substituted diphenylbutadiene liquid crystals, Chem. Mater. 15(2003) 1057-1063.

    7. [7]

      [5] J.L. Gage, H.A. Kirst, D. ONeil, et al., Synthesis and evaluation of a series of 1,4-diarylbutadienes for anticoccidial activity, Bioorg. Med. Chem. 11(2003) 4083-4091.

    8. [8]

      [6] H.F. Jiang, Q.X. Xu, A.Z. Wang, Stereoselective synthesis of tetrasubstituted olefins via palladium-catalyzed three-component coupling of aryl iodides, internal alkynes, and arylboronic acids in supercritical carbon dioxide, J. Supercrit. Fluids 49(2009) 377-384.

    9. [9]

      [7] C.X. Zhou, R.C. Larock, Regio and stereoselective route to tetrasubstituted olefins by the palladium-catalyzed three-component coupling of aryl iodides, internal alkynes, and arylboronic acids, J. Org. Chem. 70(2005) 3765-3777.

    10. [10]

      [8] G.T. Li, H.Y. Fang, S.W. Zhang, et al., Synthesis, structural characterization, and skeletal rearrangement of dibenzo tricyclo[3.3.0.02,6]-1,2,5,6-tetrasubstituted octanes, Tetrahedron Lett. 45(2004) 8399-8402.

    11. [11]

      [9] E. Negishi, F.E. Cederbaum, T. Takahashi, Metal-promoted cyclization. 11. Reaction of zirconocene dichloride with alkyllithiums or alkyl Grignard reagents as a convenient method for generating a zirconocene equivalent and its use in zirconium-promoted cyclization of alkenes, alkynes, dienes, enynes, and diynes, Tetrahedron Lett. 27(1986) 2829-2832.

    12. [12]

      [10] T. Takahashi, W.H. Sun, C.J. Xi, et al., Selective one carbon-carbon bond formation reaction of zirconacyclopentadienes with aryl iodides or alkynyl iodides, Tetrahedron 54(1998) 715-726.

    13. [13]

      [11] T. Takahashi, M. Kotoral, K. Kasai, et al., Novel syntheses of eight-membered-fivemembered fused-ring compounds from zirconacyclopentadienes, Organometallics 13(1994) 4183-4185.

    14. [14]

      [12] R. Hara, Y.H. Liu, W.H. Sun, et al., Highly substituted enyne formation by coupling reaction of alkenylzirconium compounds with alkynyl halides, Tetrahedron Lett. 38(1997) 4103-4106.

    15. [15]

      [13] C.X. Zhou, R.C. Larock, Tetrasubstituted olefin synthesis via Pd-catalyzed addition of arylboronic acids to internal alkynes using O2 as an oxidant, J. Org. Chem. 71(2006) 3184-3191.

    16. [16]

      [14] T. Satoh, S. Ogino, M. Miura, et al., Synthesis of highly substituted 1,3-butadienes by palladium-catalyzed arylation of internal alkynes, Angew. Chem. Int. Ed. 43(2004) 5063-5065.

    17. [17]

      [15] H. Horiguchi, H. Tsurugi, T. Satoh, et al., Palladium/phosphite or phosphate catalyzed oxidative coupling of arylboronic acids with alkynes to produce 1,4-diaryl-1,3-butadienes, Adv. Synth. Catal. 350(2008) 509-514.

    18. [18]

      [16] (a) H.M. Qu, X.H. Niu, J. Li, et al., Synthesis and structure determination of novel hexasubstituted cyclohexadienes, Chin. Chem. Lett. 23(2012) 1137-1140;

    19. [19]

      (b) S. Li, H.M. Qu, L.S. Zhou, et al., Zircomium-mediated selective synthesis of 1,2,4,5-tetrasubstituted benzenes from two sily-substituted alkynes and one internal alkyne, Org. Lett. 11(2009) 3318-3321;

    20. [20]

      (c) T. Seri, H.M. Qu, L.S. Zhou, et al., Substituent effects in the preparation of naphthacenes by the coupling reaction of diyne-derived zirconacyclopentadienes with tetraiodobenzene, Chem. Asian J. 3(2008) 388-392;

    21. [21]

      (d) H.M. Qu, J. Zhang, J. Li, et al., Synthesis of hexa-substituted benzenes with trimethylsilyl groups mediated by Negishi reagent and Cu or Ni compound, Tianjin Daxue Xuebao 45(2012) 770-774;

    22. [22]

      (e) J.K. Tang, X.H. Niu, L.L. Jiang, et al., Crystal structure, photoluminescence and theoretical studies of diethyl 4,5-di(thienyl)-3,6-bis (trimethylsilyl)phthalate, Chin. J. Struct. Chem. 32(2013) 1560-1566.

    23. [23]

      [17] R. Hara, Y. Nishihara, P.D. Landré, et al., Coupling reaction of alkenylzirconocenes with aryl or alkenyl iodides in the presence of CuCl/Pd(PPh3)4, Tetrahedron Lett. 38(1997) 447-450.

    24. [24]

      [18] L.S. Zhou, K. Nakajima, K.I. Kanno, et al., Synthesis of acenes via coupling of 1,4-dilithiobutadienes with diiodoarenes in the presence of CuCl, Tetrahedron Lett. 50(2009) 2722-2726.

  • 加载中
    1. [1]

      Baokang GengXiang ChuLi LiuLingling ZhangShuaishuai ZhangXiao WangShuyan SongHongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924

    2. [2]

      Hongjin ShiGuoyin YinXi LuYangyang Li . Stereoselective synthesis of 2-deoxy-α-C-glycosides from glycals. Chinese Chemical Letters, 2024, 35(12): 109674-. doi: 10.1016/j.cclet.2024.109674

    3. [3]

      Xiaohui FuYanping ZhangJuan LiaoZhen-Hua WangYong YouJian-Qiang ZhaoMingqiang ZhouWei-Cheng Yuan . Palladium-catalyzed enantioselective decarboxylation of vinyl cyclic carbamates: Generation of amide-based aza-1,3-dipoles and application to asymmetric 1,3-dipolar cycloaddition. Chinese Chemical Letters, 2024, 35(12): 109688-. doi: 10.1016/j.cclet.2024.109688

    4. [4]

      Ke ZhangSheng ZuoPengyuan YouTong RuFen-Er Chen . Palladium-catalyzed stereoselective decarboxylative [4 + 2] cyclization of 2-methylidenetrimethylene carbonates with pyrrolidone-derived enones: Straightforward access to chiral tetrahydropyran-fused spiro-pyrrolidine-2,3-diones. Chinese Chemical Letters, 2024, 35(6): 109157-. doi: 10.1016/j.cclet.2023.109157

    5. [5]

      Yuhan LiuJingyang ZhangGongming YangJian Wang . Highly enantioselective carbene-catalyzed δ-lactonization via radical relay cross-coupling. Chinese Chemical Letters, 2025, 36(1): 109790-. doi: 10.1016/j.cclet.2024.109790

    6. [6]

      Peng GuoShicheng DongXiang-Gui ZhangBing-Bin YangJun ZhuKe-Yin Ye . Cobalt-catalyzed migratory carbon-carbon cross-coupling of borabicyclo[3.3.1]nonane (9-BBN) borates. Chinese Chemical Letters, 2025, 36(4): 110052-. doi: 10.1016/j.cclet.2024.110052

    7. [7]

      Shuai ZhuMingjie ChenHaichao ShenHanming DingWenbo LiJunliang Zhang . Palladium/Xu-Phos-catalyzed enantioselective arylalkoxylation reaction of γ-hydroxyalkenes at room temperature. Chinese Chemical Letters, 2024, 35(11): 109879-. doi: 10.1016/j.cclet.2024.109879

    8. [8]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    9. [9]

      Qinghong ZhangQiao ZhaoXiaodi WuLi WangKairui ShenYuchen HuaCheng GaoYu ZhangMei PengKai Zhao . Visible-light-induced ring-opening cross-coupling of cycloalcohols with vinylazaarenes and enones via β-C-C scission enabled by proton-coupled electron transfer. Chinese Chemical Letters, 2025, 36(2): 110167-. doi: 10.1016/j.cclet.2024.110167

    10. [10]

      Yuemin ChenYunqi WuGuoao WangFeihu CuiHaitao TangYingming Pan . Electricity-driven enantioselective cross-dehydrogenative coupling of two C(sp3)-H bonds enabled by organocatalysis. Chinese Chemical Letters, 2024, 35(9): 109445-. doi: 10.1016/j.cclet.2023.109445

    11. [11]

      Lili ZhangHui GaoGong ZhangYuning DongKai HuangZifan PangTuo WangChunlei PeiPeng ZhangJinlong Gong . Cross-section design of the flow channels in membrane electrode assembly electrolyzer for CO2 reduction reaction through numerical simulations. Chinese Chemical Letters, 2025, 36(1): 110204-. doi: 10.1016/j.cclet.2024.110204

    12. [12]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    13. [13]

      Wujun JianMong-Feng ChiouYajun LiHongli BaoSong Yang . Cu-catalyzed regioselective diborylation of 1,3-enynes for the efficient synthesis of 1,4-diborylated allenes. Chinese Chemical Letters, 2024, 35(5): 108980-. doi: 10.1016/j.cclet.2023.108980

    14. [14]

      Yunqiang LiYongxian HuangSinuo LiHe HuangZhiwei Jiao . Elaborating azaaryl alkanes enabled by photoredox/palladium dual catalyzed dialkylation of azaaryl alkenes. Chinese Chemical Letters, 2025, 36(4): 110051-. doi: 10.1016/j.cclet.2024.110051

    15. [15]

      Qi LiZi-Lu WangYun-He Xu . Copper-catalyzed 1,4-silylcyanation of 1,3-enynes: A silyl radical-initiated approach for synthesis of difunctionalized allenes. Chinese Chemical Letters, 2025, 36(3): 109991-. doi: 10.1016/j.cclet.2024.109991

    16. [16]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    17. [17]

      Yiqian JiangZihan YangXiuru BiNan YaoPeiqing ZhaoXu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331

    18. [18]

      Lu DaiYuxin RenShuang LiMeidi WangChentao HuYa-Pan WuGuangtong HaiDong-Sheng Li . Room-temperature synthesis of Co(OH)2/Mo2TiC2Tx hetero-nanosheets with interfacial coupling for enhanced oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(4): 109774-. doi: 10.1016/j.cclet.2024.109774

    19. [19]

      Liangfeng YangLiang ZengYanping ZhuQiuan WangJinheng Li . Copper-catalyzed photoredox 1,4-amidocyanation of 1,3-enynes with N-amidopyridin-1-ium salts and TMSCN: Facile access to α-amido allenyl nitriles. Chinese Chemical Letters, 2024, 35(11): 109685-. doi: 10.1016/j.cclet.2024.109685

    20. [20]

      Kongchuan WuDandan LuJianbin LinTing-Bin WenWei HaoKai TanHui-Jun Zhang . Elucidating ligand effects in rhodium(Ⅲ)-catalyzed arene–alkene coupling reactions. Chinese Chemical Letters, 2024, 35(5): 108906-. doi: 10.1016/j.cclet.2023.108906

Metrics
  • PDF Downloads(0)
  • Abstract views(707)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return