Citation: Liang Deng, Wen-Hui Yang, Shao-Xiong Zhou, Ji-Tao Chen. Effect of carbon nanotubes addition on electrochemical performance and thermal stability of Li4Ti5O12 anode in commercial LiMn2O4/Li4Ti5O12 full-cell[J]. Chinese Chemical Letters, ;2015, 26(12): 1529-1534. doi: 10.1016/j.cclet.2015.06.009 shu

Effect of carbon nanotubes addition on electrochemical performance and thermal stability of Li4Ti5O12 anode in commercial LiMn2O4/Li4Ti5O12 full-cell

  • Corresponding author: Liang Deng, 
  • Received Date: 7 April 2015
    Available Online: 29 May 2015

  • Li4Ti5O12 (LTO)/carbon nanotubes (CNTs) composite material is synthesized based on a solid-state method by sand-milling, spray-drying and calcining at 850 ℃ under N2 flow. The LTO/CNTs samples with 1 wt% and 3 wt% weight ratio of CNTs addition and the pristine LTO sample are prepared. The rate performance and the thermal stability of these samples are investigated based on LiMn2O4 (LMO)/LTO full-cell. The results show that theweight ratio of CNTs addition has distinct effect on LTO performances. The composite materials of LTO composited CNTs have better performance at high-rate due to the intercalation enhancement by conductive network of CNTs. At second, the overcharging temperature response of the cell's surface with 1 wt% CNTs addition is the lowest. The particle size distribution is measured and the most uniform particles are obtained with 1 wt% CNTs addition. This trend could explain that the mediumquantity of CNTs is optimal to improve the heat and mass transfer and prevent the problems of crystallite growing interference and aggregation during the calcination process.
  • 加载中
    1. [1]

      [1] W. Wei, L.X. Song, L. Guo, SnO2 hollow nanospheres assembled by single layer nanocrystals as anode material for high performance Li ion batteries, Chin. Chem. Lett. 26 (2015) 124-128.

    2. [2]

      [2] Y.J. Li, C.X. Zhou, S. Chen, F. Wu, L. Hong, Nd3+-doped Li3V2(PO4)3 cathode material with high rate capability for Li-ion batteries, Chin. Chem. Lett. (2015), http:// dx.doi.org/10.1016/j.cclet.2015.03.013.

    3. [3]

      [3] K. Wu, J. Yang, Y. Zhang, C.Y. Wang, D.Y. Wang, Investigation on Li4Ti5O12 batteries developed for hybrid electric vehicle, J. Appl. Electrochem. 42 (2012) 989-995.

    4. [4]

      [4] L.J. Chang, S.H. Luo, H.L. Zhang, et al., Synthesis and performance of Li4Ti5O12 anode materials using the PVP-assisted combustion method, Chin. Chem. Lett. 25 (2014) 1569-1572.

    5. [5]

      [5] T. Ohzuku, A. Ueda, N. Yamamota, Zero-strain insertion material of Li[Li1/3Ti5/3]O4 for rechargeable lithium cells, J. Electrochem. Soc. 142 (1995) 1431-1435.

    6. [6]

      [6] K. Ariyoshi, R. Yamato, T. Ohzuku, Zero-strain insertion mechanism of Li[Li1/3Ti5/ 3]O4 for advanced lithium-ion (shuttlecock) batteries, Electrochim. Acta 51 (2005) 1125-1129.

    7. [7]

      [7] J.L. Allen, T.R. Jow, J. Wolfenstine, Low temperature performance of nanophase Li4Ti5O12, J. Power Sources 159 (2006) 1340-1345.

    8. [8]

      [8] M. Marinaro, F. Nobili, A. Birrozzi, et al., Improved low-temperature electrochemical performance of Li4Ti5O12 composite anodes for Li-ion batteries, Electrochim. Acta 109 (2013) 207-213.

    9. [9]

      [9] Y.R. Zhu, L.C. Yin, T.F. Yi, et al., Electrochemical performance and lithium-ion intercalation kinetics of submicron-sized Li4Ti5O12 anode material, J. Alloys Compd. 547 (2013) 107-112.

    10. [10]

      [10] Z.W. Zhang, L.Y. Cao, J.F. Huang, et al., Temperature effect on spinel Li4Ti5O12 as anode materials for lithium ion batteries, Electrochim. Acta 88 (2013) 443-446.

    11. [11]

      [11] X. Li, P.X. Huang, Y. Zhou, et al., A novel Li4Ti5O12/graphene/carbon nano-tubes hybrid material for high rate lithium ion batteries, Mater. Lett. 133 (2014) 289- 292.

    12. [12]

      [12] M. Vujković, I. Stojković, M. Mitrić, S. Mentus, N. Cvjetićanin, Hydrothermal synthesis of Li4Ti5O12/C nanostructured composites: morphology and electrochemical performance, Mater. Res. Bull. 48 (2013) 218-223.

    13. [13]

      [13] L.P. Wang, H.Q. Zhang, Q.J. Deng, et al., Superior rate performance of Li4Ti5O12/ TiO2/C/CNTs composites via microemulsion-assisted method as anodes for lithium ion battery, Electrochim. Acta 142 (2014) 202-207.

    14. [14]

      [14] C.F. Lin, B. Ding, Y.L. Xin, et al., Advanced electrochemical performance of Li4Ti5O12-based materials for lithium-ion battery: synergistic effect of doping and compositing, J. Power Sources 248 (2014) 1034-1041.

    15. [15]

      [15] X.M. Liu, Z.D. Huang, S.W. Oh, et al., Carbon nanotube (CNT)-based composites as electrode material for rechargeable Li-ion batteries: a review, Compos. Sci. Technol. 72 (2012) 121-144.

    16. [16]

      [16] L. Li, H. Yang, D.X. Zhou, Y.Y. Zhou, Progress in application of CNTs in lithium-ion batteries, J. Nanomater. (2014) 187891.

    17. [17]

      [17] W.X. Bao, C.C. Zhu, Study of thermal conduction of carbon nanotube by molecular dynamics, Acta Phys. Sin. 55 (2006) 3552-3557.

    18. [18]

      [18] Y. Cuenca, A. Vernet, M. Vallè s, Thermal conductivity enhancement of the binary mixture (NH3 + LiNO3) by the addition of CNTs, Int. J. Refrig. 41 (2014) 113-120.

    19. [19]

      [19] L.F. Shen, C.Z. Yuan, H.J. Luo, et al., In situ growth of Li4Ti5O12 on multi-walled carbon nanotubes: novel coaxial nanocables for high rate lithium ion batteries, J. Mater. Chem. 21 (2011) 761-767.

    20. [20]

      [20] H.F. Ni, L.Z. Fan, Nano-Li4Ti5O12 anchored on carbon nanotubes by liquid phase deposition as anode material for high rate lithium-ion batteries, J. Power Sources 214 (2012) 195-199.

    21. [21]

      [21] Z.G. Wang, Z.X. Wang, W.J. Peng, H.J. Guo, X.H. Li, An improved solid-state reaction to synthesize Zr-doped Li4Ti5O12 anode material and its application in LiMn2O4/ Li4Ti5O12 full-cell, Ceram. Int. 40 (2014) 10053-10059.

    22. [22]

      [22] A.D. Pasquiera, C.C. Huang, T. Spitler, Nano Li4Ti5O12-LiMn2O4 batteries with high power capability and improved cycle-life, J. Power Sources 186 (2009) 508-514.

    23. [23]

      [23] Y.R. Jhan, J.G. Duh, Synthesis of entanglement structure in nanosized Li4Ti5O12/ multi-walled carbon nanotubes composite anode material for Li-ion batteries by ball-milling-assisted solid-state reaction, J. Power Sources 198 (2012) 294-297.

    24. [24]

      [24] H.Y. Zhang, Y.T. Chen, J. Li, C.H. He, Y.M. Chen, Li4Ti5O12/CNTs composite anode material for large capacity and high-rate lithium ion batteries, Int. J. Hydrogen Energy 39 (2014) 16096-16102.

    25. [25]

      [25] S.J. Bae, H.D. Song, I. Nam, et al., Quantitative performance analysis of graphite- LiFePO4 battery working at low temperature, Chem. Eng. Sci. 118 (2014) 74-82.

    26. [26]

      [26] X.N. Feng, M. Fang, X.M. He, et al., Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry, J. Power Sources 255 (2014) 294-301.

    27. [27]

      [27] M.G. Ouyang, D.S. Ren, L.G. Lu, et al., Overcharge-induced capacity fading analysis for large format lithium-ion batteries with LiyNi1/3Co1/3Mn1/3O2 + LiyMn2O4 composite cathode, J. Power Sources 279 (2015) 626-635.

  • 加载中
    1. [1]

      Mengwen Wang Qintao Sun Yue Liu Zhengan Yan Qiyu Xu Yuchen Wu Tao Cheng . Impact of lithium nitrate additives on the solid electrolyte interphase in lithium metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(2): 100203-100203. doi: 10.1016/j.cjsc.2023.100203

    2. [2]

      Ting HuYuxuan GuoYixuan MengZe ZhangJi YuJianxin CaiZhenyu Yang . Uniform lithium deposition induced by copper phthalocyanine additive for durable lithium anode in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108603-. doi: 10.1016/j.cclet.2023.108603

    3. [3]

      Tao WeiJiahao LuPan ZhangQi ZhangGuang YangRuizhi YangDaifen ChenQian WangYongfu Tang . An intermittent lithium deposition model based on bimetallic MOFs derivatives for dendrite-free lithium anode with ultrahigh areal capacity. Chinese Chemical Letters, 2024, 35(8): 109122-. doi: 10.1016/j.cclet.2023.109122

    4. [4]

      Shu LinKezhen Qi . Phase-dependent lithium-alloying reactions for lithium-metal batteries. Chinese Chemical Letters, 2024, 35(4): 109431-. doi: 10.1016/j.cclet.2023.109431

    5. [5]

      Dong SuiJiayi Liu . Constriction-susceptible lithium support for fast cycling of solid-state lithium metal battery. Chinese Chemical Letters, 2025, 36(2): 110417-. doi: 10.1016/j.cclet.2024.110417

    6. [6]

      Qihou LiJiamin LiuFulu ChuJinwei ZhouJieshuangyang ChenZengqiang GuanXiyun YangJie LeiFeixiang Wu . Coordinating lithium polysulfides to inhibit intrinsic clustering behavior and facilitate sulfur redox conversion in lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(5): 110306-. doi: 10.1016/j.cclet.2024.110306

    7. [7]

      Qian WangDong YangWenxing XinYongqi WangWenchang HanWengxiang YanChunman YangFei WangYiyong ZhangZiyi ZhuXue Li . Modulation of desolvation barriers and inhibition of lithium dendrites based on lithophilic electrolyte additives for lithium metal anode. Chinese Chemical Letters, 2025, 36(6): 110669-. doi: 10.1016/j.cclet.2024.110669

    8. [8]

      Ruofan QiJing ZhangWang SunBai YuZhenhua WangKening Sun . Solid-acid-Lewis-base interaction accelerates lithium ion transport for uniform lithium deposition. Chinese Chemical Letters, 2025, 36(6): 110009-. doi: 10.1016/j.cclet.2024.110009

    9. [9]

      Jiale ZhengMei ChenHuadong YuanJianmin LuoYao WangJianwei NaiXinyong TaoYujing Liu . Electron-microscopical visualization on the interfacial and crystallographic structures of lithium metal anode. Chinese Chemical Letters, 2024, 35(6): 108812-. doi: 10.1016/j.cclet.2023.108812

    10. [10]

      Fangling Cui Zongjie Hu Jiayu Huang Xiaoju Li Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337

    11. [11]

      Haixia WuKailu Guo . Iodized polyacrylonitrile as fast-charging anode for lithium-ion battery. Chinese Chemical Letters, 2024, 35(10): 109550-. doi: 10.1016/j.cclet.2024.109550

    12. [12]

      Jia-hui Li Jinkai Qiu Cheng Lian . Lithium-ion rapid transport mechanism and channel design in solid electrolytes. Chinese Journal of Structural Chemistry, 2025, 44(1): 100381-100381. doi: 10.1016/j.cjsc.2024.100381

    13. [13]

      Yinghui Xia Yixi Lin Zhenming Xu . Cation potential guiding structural regulation of lithium halide superionic conductors. Chinese Journal of Structural Chemistry, 2025, 44(3): 100448-100448. doi: 10.1016/j.cjsc.2024.100448

    14. [14]

      Bo-Bo ZouHong-Jie Peng . Phase diagram as a lens for unveiling thermodynamics trends in lithium–sulfur batteries. Chinese Chemical Letters, 2025, 36(7): 110986-. doi: 10.1016/j.cclet.2025.110986

    15. [15]

      Hongfei LiHao ChenQi KangLihe GuoXingyi HuangHaiping Xu . Gel polymer electrolyte for flexible and stretchable lithium metal battery: Advances and prospects. Chinese Chemical Letters, 2025, 36(9): 110325-. doi: 10.1016/j.cclet.2024.110325

    16. [16]

      Qianqian SongYunting ZhangJianli LiangSi LiuJian ZhuXingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797

    17. [17]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    18. [18]

      Yue QianZhoujia LiuHaixin SongRuize YinHanni YangSiyang LiWeiwei XiongSaisai YuanJunhao ZhangHuan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785

    19. [19]

      Chang LiuZirui SongXinglan DengShihong XuRenji ZhengWentao DengHongshuai HouGuoqiang ZouXiaobo Ji . Interfacial/bulk synergetic effects accelerating charge transferring for advanced lithium-ion capacitors. Chinese Chemical Letters, 2024, 35(6): 109081-. doi: 10.1016/j.cclet.2023.109081

    20. [20]

      Jianmei HanPeng WangHua ZhangNing SongXuguang AnBaojuan XiShenglin Xiong . Performance optimization of chalcogenide catalytic materials in lithium-sulfur batteries: Structural and electronic engineering. Chinese Chemical Letters, 2024, 35(7): 109543-. doi: 10.1016/j.cclet.2024.109543

Metrics
  • PDF Downloads(0)
  • Abstract views(1095)
  • HTML views(37)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return