Citation: Sheng-Ping Wang, Wei Li, Yuan-Yuan Dong, Yu-Jun Zhao, Xin-Bin Ma. Effects of potassium promoter on the performance of PdCl2-CuCl2/AC catalysts for the synthesis of dimethyl carbonate from CO and methyl nitrite[J]. Chinese Chemical Letters, ;2015, 26(11): 1359-1363. doi: 10.1016/j.cclet.2015.06.008 shu

Effects of potassium promoter on the performance of PdCl2-CuCl2/AC catalysts for the synthesis of dimethyl carbonate from CO and methyl nitrite

  • Corresponding author: Xin-Bin Ma, 
  • Received Date: 8 May 2015
    Available Online: 2 June 2015

  • The effect of potassium (K) promoter on the catalytic performance of activated carbon (AC) supported Wacker-type catalysts (PdCl2-CuCl2/AC) for the synthesis of dimethyl carbonate (DMC) from CO and methyl nitrite (MN) was investigated by means of N2 adsorption, H2-temperature-programmed reduction (H2-TPR), and X-ray photoelectron spectroscopy (XPS). The experimental results showed that the space time yield of DMC on Wacker-type catalysts with different K promoters ranked in the following order: KCl > KOH > CH3COOK > K2CO3. Especially, the addition of KCl significantly improved the catalytic activities of PdCl2-CuCl2/AC catalyst for DMC synthesis from CO and MN. N2 adsorption data indicated that the addition of K promoters did not change the textural properties of Wacker-type catalysts greatly. H2-TPR and XPS results demonstrated that the existence of KCl promoted the reducibility of Cu2+ species and increased the proportion of Cu2+ species on catalyst surface, which is favorable for oxidizing Pd0 to active Pd2+. Further, the addition of KCl benefited the reactivity of PdCl2- CuCl2/AC catalyst for DMC synthesis from CO and MN.
  • 加载中
    1. [1]

      [1] Y. Ono, Dimethyl carbonate for environmentally benign reactions, Catal. Today 35 (1997) 15-25.

    2. [2]

      [2] M.A. Pacheco, C.L. Marshall, Review of dimethyl carbonate (DMC) manufacture and its characteristics as a fuel additive, Energy Fuels 11 (1997) 2-29.

    3. [3]

      [3] P. Tundo, M. Selva, The chemistry of dimethyl carbonate, Acc. Chem. Res. 35 (2002) 706-716.

    4. [4]

      [4] B. Ferrer, M. Alvaro, H. Garcia, Application of dimethyl carbonate as solvent and reagent, in: A. Mohammad (Ed.), Green Solvents I, Springer, Netherlands, 2012, pp. 363-374.

    5. [5]

      [5] C.S. Ló pez-Garzó n, L.A.M. van der Wielen, A.J.J. Straathof, Green upgrading of succinate using dimethyl carbonate for a better integration with fermentative production, Chem. Eng. J. 235 (2014) 52-60.

    6. [6]

      [6] Y.-J. Zhou, M. Xiao, S.-J. Wang, et al., Effects of Mo promoters on the Cu-Fe bimetal catalysts for the DMC formation from CO2 and methanol, Chin. Chem. Lett. 24 (2013) 307-310.

    7. [7]

      [7] J. Bian, X.W. Wei, L. Wang, Z.P. Guan, Graphene nanosheet as support of catalytically active metal particles in DMC synthesis, Chin. Chem. Lett. 22 (2011) 57-60.

    8. [8]

      [8] T. Matsuzaki, A. Nakamura, Dimethyl carbonate synthesis and other oxidative reactions using alkyl nitrites, Catal. Surv. Asia 1 (1997) 77-88.

    9. [9]

      [9] Y. Yamamoto, T. Matsuzaki, S. Tanaka, et al., Catalysis and characterization of Pd/ NaY for dimethyl carbonate synthesis from methyl nitrite and CO, J. Chem. Soc., Faraday Trans. 93 (1997) 3721-3727.

    10. [10]

      [10] T. Matsuzaki, K. Ohdan, M. Asano, et al., Preparation method of dimethyl carbonate using methyl nitrite, Nippon Kagaku Kaishi 1999 (1999) 15-24.

    11. [11]

      [11] Y. Yamamoto, Vapor phase carbonylation reactions using methyl nitrite over Pd catalysts, Catal. Surv. Asia 14 (2010) 103-110.

    12. [12]

      [12] T. Matsuzaki, 99 Novel method for dimethyl carbonate synthesis using methyl nitrite, in: M. Anpo, M. Onaka, H. Yamashita (Eds.), Studies in Surface Science and Catalysis, Elsevier, 2003, pp. 447-450.

    13. [13]

      [13] P. Yang, Y. Cao, W.-L. Dai, J.-F. Deng, K.-N. Fan, Effect of chemical treatment of activated carbon as a support for promoted dimethyl carbonate synthesis by vapor phase oxidative carbonylation of methanol over Wacker-type catalysts, Appl. Catal. A: General 243 (2003) 323-331.

    14. [14]

      [14] R.X. Jiang, S.F. Wang, X.Q. Zhao, Y.J. Wang, C.F. Zhang, The effects of promoters on catalytic properties and deactivation-regeneration of the catalyst in the synthesis of dimethyl carbonate, Appl. Catal. A: General 238 (2003) 131-139.

    15. [15]

      [15] X.S. Ding, X.M. Dong, D.T. Kuang, et al., Highly efficient catalyst PdCl2-CuCl2-KOAc/ AC@Al2O3 for gas-phase oxidative carbonylation of methanol to dimethyl carbonate: preparation and reaction mechanism, Chem. Eng. J. 240 (2014) 221-227.

    16. [16]

      [16] Y. Cao, P. Yang, C.-Z. Yao, et al., Impact of preparation strategy on the properties of carbon-supported Wacker-type catalysts in vapor-phase dimethyl carbonate synthesis, Appl. Catal. A: General 272 (2004) 15-22.

    17. [17]

      [17] K. Tomishige, T. Sakaihori, S.-I. Sakai, K. Fujimoto, Dimethyl carbonate synthesis by oxidative carbonylation on activated carbon supported CuCl2 catalysts: catalytic properties and structural change, Appl. Catal. A: General 181 (1999) 95-102.

    18. [18]

      [18] L. Wang, Y.B. Zhou, Q.F. Liu, Y. Guo, G.Z. Lu, Effect of surface properties of activated carbon on CO oxidation over supported Wacker-type catalysts, Catal. Today 153 (2010) 184-188.

    19. [19]

      [19] A. Punnoose, M.S. Seehra, B.C. Dunn, E.M. Eyring, Characterization of CuCl2/PdCl2/ activated carbon catalysts for the synthesis of diethyl carbonate, Energy Fuels 16 (2001) 182-188.

    20. [20]

      [20] L. Wang, Y.F. Feng, Y.H. Zhang, et al., Effect of original activated carbon support and the presence of NOx on CO oxidation over supported Wacker-type catalysts, Fuel 96 (2012) 440-445.

  • 加载中
    1. [1]

      Xinyu LiuJialin YangZonglin HeJiaoyan AiLina SongBaohua Liu . Linear polyurethanes with excellent comprehensive properties from poly(ethylene carbonate) diol. Chinese Chemical Letters, 2025, 36(1): 110236-. doi: 10.1016/j.cclet.2024.110236

    2. [2]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

    3. [3]

      Guihuang FangWei ChenHongwei YangHaisheng FangChuang YuMaoxiang Wu . Improved performance of LiMn0.8Fe0.2PO4 by addition of fluoroethylene carbonate electrolyte additive. Chinese Chemical Letters, 2024, 35(6): 108799-. doi: 10.1016/j.cclet.2023.108799

    4. [4]

      Zhenjie YangChenyang HuXuan PangXuesi Chen . Sequence design in terpolymerization of ε-caprolactone, CO2 and cyclohexane oxide: Random ester-carbonate distributions lead to large-span tunability. Chinese Chemical Letters, 2024, 35(5): 109340-. doi: 10.1016/j.cclet.2023.109340

    5. [5]

      Kunyao PengXianbin WangXingbin Yan . Converting LiNO3 additive to single nitrogenous component Li2N2O2 SEI layer on Li metal anode in carbonate-based electrolyte. Chinese Chemical Letters, 2024, 35(9): 109274-. doi: 10.1016/j.cclet.2023.109274

Metrics
  • PDF Downloads(0)
  • Abstract views(713)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return