Citation: Zhi-Mei Luo, Yan-Guang Sun, Hui-Yong Liu. Electrochemical performance of a nano SnO2-modified LiNi1/3Co1/3Mn1/3O2 cathode material[J]. Chinese Chemical Letters, ;2015, 26(11): 1403-1408. doi: 10.1016/j.cclet.2015.06.007 shu

Electrochemical performance of a nano SnO2-modified LiNi1/3Co1/3Mn1/3O2 cathode material

  • Corresponding author: Hui-Yong Liu, 
  • Received Date: 29 April 2015
    Available Online: 8 June 2015

  • The nano SnO2-modified LiNi1/3Co1/3Mn1/3O2 was successfully prepared by a carrier transfer method. The pristine and modified samples were characterized with various techniques such as XRD, SEM, XPS and EDS. The results showed that the SnO2 particles did not enter the crystal structure of LiNi1/3Co1/ 3Mn1/3O2, many nano SnO2 particles were uniformly covered on the surface of LiNi1/3Co1/3Mn1/3O2 and the modified thin layer could inhibit the dissolution of transition metal oxides. The electrochemical tests indicated that the existence of nano SnO2 could improve the discharge capacity and rate capability owing to the decreased interfacial polarization. The cycling stability was remarkably improved at room temperature and 55 ℃. The XRD patterns of the fresh NCM electrode and after 50 cycles proved that the structural change of NCM was not so effective on the capacity fade.
  • 加载中
    1. [1]

      [1] S.K. Hu, G.H. Cheng, M.Y. Cheng, et al., Cycle life improvement of ZrO2-coated spherical LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries, J. Power Sources 188 (2009) 564-569.

    2. [2]

      [2] Y.L. Yao, H.C. Liu, G.C. Li, et al., Synthesis and electrochemical performance of phosphate-coated porous LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries, Electrochim. Acta 113 (2013) 340-345.

    3. [3]

      [3] K.C. Jiang, S. Xin, J.-S. Lee, et al., Improved kinetics of LiNi1/3Mn1/3Co1/3O2 cathode material through reduced graphene oxide networks, Phys. Chem. Chem. Phys. 14 (2012) 2934-2939.

    4. [4]

      [4] D.C. Li, Y. Kato, K. Kobayakawa, et al., Preparation and electrochemical characteristics of LiNi1/3Mn1/3Co1/3O2 coated with metal oxides coating, J. Power Sources 160 (2006) 1342-1348.

    5. [5]

      [5] H. Miyashiro, A. Yamanaka, M. Tabuchi, et al., Improvement of degradation at elevated temperature and at high state-of-charge storage by ZrO2 coating on LiCoO2, J. Electrochem. Soc. 153 (2006) A348-A353.

    6. [6]

      [6] Z. Yang, X.H. Li, Z.X. Wang, et al., Surface modification of spherical LiNi1/3Co1/3Mn1/3O2 with A12O3 using heterogeneous nucleation process, Trans. Nonferrous Met. Soc. China 17 (2007) 1319-1323.

    7. [7]

      [7] L.A. Riley, S. Van Atta, A.S. Cavanagh, et al., Electrochemical effects of ALD surface modification on combustion synthesized LiNi1/3Mn1/3Co1/3O2 as a layered-cathode material, J. Power Sources 196 (2011) 3317-3324.

    8. [8]

      [8] X.Z. Liu, P. He, H.Q. Li, et al., Improvement of electrochemical properties of LiNi1/3Co1/3Mn1/3O2 by coating with V2O5 layer, J. Alloys Compd. 552 (2013) 76-82.

    9. [9]

      [9] N. Machida, J. Kashiwagi, M. Naito, et al., Electrochemical properties of all-solidstate batteries with ZrO2 coated LiNi1/3Co1/3Mn1/3O2 as cathode materials, Solid State Ion. 225 (2012) 354-358.

    10. [10]

      [10] F. Wu, M. Wang, Y.F. Su, et al., Effect of TiO2-coating on the electrochemical performances of LiCo1/3Ni1/3Mn1/3O2, J. Power Sources 191 (2009) 628-632.

    11. [11]

      [11] M. Wang, F. Wu, Y.F. Su, et al., Modification of LiCo1/3 Ni1/3 Mn1/3 O2 cathode material by CeO2-coating, Sci. China Ser. E: Technol. Sci. 52 (2009) 2737- 2741.

    12. [12]

      [12] F. Wu, M. Wang, Y.F. Su, et al., Surface of LiCo1/3Ni1/3Mn1/3O2 modified by CeO2- coating, Electrochim. Acta 54 (2009) 6803-6807.

    13. [13]

      [13] K. Yang, L.Z. Fan, J. Guo, et al., Surface of LiCo1/3Ni1/3Mn1/3O2 modified by CeO2- coating, Electrochim. Acta 63 (2012) 363-368.

    14. [14]

      [14] J. Cho, C.-S. Kim, S.-I. Yoo, Improvement of structural stability of LiCoO2 cathode during electrochemical cycling by sol-gel coating of SnO2, Electrochem. Solid- State Lett. 3 (2000) 362-365.

    15. [15]

      [15] D. Ziolkowska, K.P. Korona, B. Hamankiewicz, et al., The role of SnO2 surface coating on the electrochemical performance of LiFePO4 cathode materials, Electrochim. Acta 108 (2013) 532-539.

    16. [16]

      [16] L. Wang, J.S. Zhao, S.H. Guo, et al., Investigation of SnO2-modified LiMn2O4 composite as cathode material for lithium-ion batteries, Int. J. Electrochem. Sci. 5 (2010) 1113-1126.

    17. [17]

      [17] C.E. Lia, W.Y. Ye, H.Y. Liu, et al., Preparation of TiO2-coated LiMn2O4 by carrier transfer method, Ionics 15 (2009) 389-392.

    18. [18]

      [18] H.-J. Ahn, H.-C. Choi, K.-W. Park, et al., Investigation of the structural and electrochemical properties of size-controlled SnO2 nanoparticles, J. Phys. Chem. B 108 (2004) 9815-9820.

    19. [19]

      [19] X.Z. Liu, H.Q. Li, E. Yoo, et al., Fabrication of FePO4 layer coated LiNi1/3Co1/3Mn1/3O2: towards high-performance cathode materials for lithium ion batteries, Electrochim. Acta 83 (2012) 253-258.

    20. [20]

      [20] H. Li, Z.X. Wang, L.Q. Chen, et al., Research on advanced materials for Li-ion batteries, Adv. Mater. 21 (2009) 4593-4607.

    21. [21]

      [21] K.M. Shaju, G.V. Subba Rao, B.V.R. Chowdari, Performance of layered Li(Ni1/3Co1/3Mn1/3)O2 as cathode for Li-ion batteries, Electrochim. Acta 48 (2002) 145-151.

    22. [22]

      [22] C.V. Rao, A.L.M. Reddy, Y. Ishikawa, et al., LiNi1/3Co1/3Mn1/3O2-graphene composite as a promising cathode for lithium-ion batteries, ACS Appl. Mater. Interfaces 3 (2011) 2966-2972.

    23. [23]

      [23] C.X. Huang, D.D. Chen, Y.Y. Huang, et al., Sol-gel synthesis of Li3V2(PO4)3/C cathode materials with high electrical conductivity, Electrochim. Acta 100 (2013) 1-9.

    24. [24]

      [24] H.H. Zheng, Q.N. Sun, G. Liu, et al., Correlation between dissolution behavior and electrochemical cycling performance for LiNi1/3Co1/3Mn1/3O2-based cells, J. Power Sources 207 (2012) 134-140.

  • 加载中
    1. [1]

      Chenghao GePeng WangPei YuanTai WuRongjun ZhaoRong HuangLin XieYong Hua . Tuning hot carrier transfer dynamics by perovskite surface modification. Chinese Chemical Letters, 2024, 35(10): 109352-. doi: 10.1016/j.cclet.2023.109352

    2. [2]

      Haoyang WangRonghao ZhangYanlun RenLi Zhang . A convenient method for measuring gas-liquid volumetric mass transfer coefficient in micro reactors. Chinese Chemical Letters, 2024, 35(4): 108833-. doi: 10.1016/j.cclet.2023.108833

    3. [3]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

    4. [4]

      Zhiwei ZhongYanbin HuangWantai Yang . A simple photochemical method for surface fluorination using perfluoroketones. Chinese Chemical Letters, 2024, 35(5): 109339-. doi: 10.1016/j.cclet.2023.109339

    5. [5]

      Erzhuo ChengYunyi LiWei YuanWei GongYanjun CaiYuan GuYong JiangYu ChenJingxi ZhangGuangquan MoBin Yang . Galvanostatic method assembled ZIFs nanostructure as novel nanozyme for the glucose oxidation and biosensing. Chinese Chemical Letters, 2024, 35(9): 109386-. doi: 10.1016/j.cclet.2023.109386

    6. [6]

      Keyang LiYanan WangYatao XuGuohua ShiSixian WeiXue ZhangBaomei ZhangQiang JiaHuanhua XuLiangmin YuJun WuZhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511

    7. [7]

      Wenxuan YangLong ShangXiaomeng LiuSihan ZhangHaixia LiZhenhua YanJun Chen . Ultrafast synthesis of nanocrystalline spinel oxides by Joule-heating method. Chinese Chemical Letters, 2024, 35(11): 109501-. doi: 10.1016/j.cclet.2024.109501

    8. [8]

      Chen ChenJinzhou ZhengChaoqin ChuQinkun XiaoChaozheng HeXi Fu . An effective method for generating crystal structures based on the variational autoencoder and the diffusion model. Chinese Chemical Letters, 2025, 36(4): 109739-. doi: 10.1016/j.cclet.2024.109739

    9. [9]

      Wengao ZengYuchen DongXiaoyuan YeZiying ZhangTuo ZhangXiangjiu GuanLiejin Guo . Crystalline carbon nitride with in-plane built-in electric field accelerates carrier separation for excellent photocatalytic hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109252-. doi: 10.1016/j.cclet.2023.109252

    10. [10]

      Zhiyu YuXiang LuoCheng ZhangXin LuXiaohui LiPan LiaoZhongqiu LiuRong ZhangShengtao WangZhiqiang YuGuochao Liao . Mitochondria-targeted carrier-free nanoparticles based on dihydroartemisinin against hepatocellular carcinoma. Chinese Chemical Letters, 2024, 35(10): 109519-. doi: 10.1016/j.cclet.2024.109519

    11. [11]

      Rongjun ZhaoTai WuYong HuaYude Wang . Improving performance of perovskite solar cells enabled by defects passivation and carrier transport dynamics regulation via organic additive. Chinese Chemical Letters, 2025, 36(2): 109587-. doi: 10.1016/j.cclet.2024.109587

    12. [12]

      Liqing ChenZheming ZhangYanhong LiuChenfei LiuCongcong XiaoLiming GongMingji JinZhonggao GaoWei Huang . Systemically intravenous siRNA delivery into brain with a targeting and efficient polypeptide carrier and its evaluation on anti-glioma efficacy. Chinese Chemical Letters, 2025, 36(3): 110228-. doi: 10.1016/j.cclet.2024.110228

    13. [13]

      Ying LiLong-Jie WangYong-Kang ZhouJun LiangBin XiaoJi-Shen Zheng . An improved installation of 2-hydroxy-4-methoxybenzyl (iHmb) method for chemical protein synthesis. Chinese Chemical Letters, 2024, 35(5): 109033-. doi: 10.1016/j.cclet.2023.109033

    14. [14]

      Peng ZhouZiang JiangYang LiPeng XiaoFeixiang Wu . Sulphur-template method for facile manufacturing porous silicon electrodes with enhanced electrochemical performance. Chinese Chemical Letters, 2024, 35(8): 109467-. doi: 10.1016/j.cclet.2023.109467

    15. [15]

      Ting LiXinxin ZhengLejing QuYuanyuan OuSai QiaoXue ZhaoYajun ZhangXinfeng ZhaoQian Li . A chromatographic method for pursuing potential GPCR ligands with the capacity to characterize their intrinsic activities of regulating downstream signaling pathway. Chinese Chemical Letters, 2024, 35(10): 109792-. doi: 10.1016/j.cclet.2024.109792

    16. [16]

      Yihong LiZhong QiuLei HuangShenghui ShenPing LiuHaomiao ZhangFeng CaoXinping HeJun ZhangYang XiaXinqi LiangChen WangWangjun WanYongqi ZhangMinghua ChenWenkui ZhangHui HuangYongping GanXinhui Xia . Plasma enhanced reduction method for synthesis of reduced graphene oxide fiber/Si anode with improved performance. Chinese Chemical Letters, 2024, 35(11): 109510-. doi: 10.1016/j.cclet.2024.109510

    17. [17]

      Yuwen ZhuXiang DengYan WuBaode ShenLingyu HangYuye XueHailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733

    18. [18]

      Meiling XuXinyang LiPengyuan LiuJunjun LiuXiao HanGuodong ChaiShuangling ZhongBai YangLiying Cui . A novel and visible ratiometric fluorescence determination of carbaryl based on red emissive carbon dots by a solvent-free method. Chinese Chemical Letters, 2025, 36(2): 109860-. doi: 10.1016/j.cclet.2024.109860

    19. [19]

      Mei PengWei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899

    20. [20]

      Tong TongLezong ChenSiying WuZhong CaoYuanbin SongJun Wu . Establishment of a leucine-based poly(ester amide)s library with self-anticancer effect as nano-drug carrier for colorectal cancer treatment. Chinese Chemical Letters, 2024, 35(12): 109689-. doi: 10.1016/j.cclet.2024.109689

Metrics
  • PDF Downloads(0)
  • Abstract views(705)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return