Citation: Samy M. Shaban, Ismail Aiad, Mohamed M. El-Sukkary, E.A. Soliman, Moshira Y. El-Awady. Preparation of capped silver nanoparticles using sunlight and cationic surfactants and their biological activity[J]. Chinese Chemical Letters, ;2015, 26(11): 1415-1420. doi: 10.1016/j.cclet.2015.06.006 shu

Preparation of capped silver nanoparticles using sunlight and cationic surfactants and their biological activity

  • Corresponding author: Samy M. Shaban, 
  • Received Date: 14 April 2015
    Available Online: 28 May 2015

  • Silver nanoparticles were prepared in situ using sunlight and cationic surfactants. Silver nano-particles were confirmed using UV-vis spectrophotometry, transmission electron microscopy (TEM), electron diffraction, dynamic light scattering (DLS) and FTIR. Increasing the hydrophobic chain length of surfactants increase the amount of silver nano-particles formed in addition to increasing their stability. The results showed formed, uniform, well arranged hexagonal and spherical shapes. The prepared silver nanoparticles exhibit enhanced biological activity against Gram-positive, Gram-negative bacteria and sulfate reducing bacteria (SRB).
  • 加载中
    1. [1]

      [1] A.J. Haes, R.P. van Duyne, Nanosensors enable portable detectors for environmental and medical applications, Laser Focus World 39 (2003) 153-156.

    2. [2]

      [2] S. Magdassi, A. Bassa, Y. Vinetsky, A. Kamyshny, Silver nanoparticles as pigments for water-based ink-jet inks, Chem. Mater. 15 (2003) 2208-2217.

    3. [3]

      [3] F. Frederix, J.M. Friedt, K.H. Choi, et al., Biosensing based on light absorption of nanoscaled gold and silver particles, Anal. Chem. 75 (2003) 6894-6900.

    4. [4]

      [4] A.A. Abd-Elaal, S.M. Tawfik, S.M. Shaban, Simple one step synthesis of nonionic dithiol surfactants and their self-assembling with silver nanoparticles: characterization, surface properties, biological activity, Appl. Surf. Sci. 342 (2015) 144- 153.

    5. [5]

      [5] S. Gamerith, A. Klug, H. Scheiber, et al., Direct ink-jet printing of Ag-Cu nanoparticles and Ag-precursor based electrodes for OFET applications, Adv. Funct. Mater. 17 (2007) 3111-3118.

    6. [6]

      [6] I. Sondi, B. Salopek-Sondi, Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria, J. Colloid Interface Sci. 275 (2004) 177-182.

    7. [7]

      [7] F.L. Xue, Z.C. Liu, Y. Su, K. Varahramyan, Inkjet printed silver source/drain electrodes for low-cost polymer thin film transistors, Microelectron. Eng. 83 (2006) 298-302.

    8. [8]

      [8] Y. Shiraishi, N. Toshima, Oxidation of ethylene catalyzed by colloidal dispersions of poly(sodium acrylate)-protected silver nanoclusters, Colloids Surf. A 169 (2000) 59-66.

    9. [9]

      [9] J.H. Crabtree, R.J. Burchette, R.A. Siddiqi, et al., The efficacy of silver-ion implanted catheters in reducing peritoneal dialysis-related infections, Perit Dial Int. 23 (2003) 368-374.

    10. [10]

      [10] J.S. Kim, E. Kuk, K.N. Yu, et al., Antimicrobial effects of silver nanoparticles, Nanomed. Nanotechnol. Biol. Med. 3 (2007) 95-101.

    11. [11]

      [11] C. Aymonier, U. Schlotterbeck, L. Antonietti, et al., Hybrids of silver nanoparticles with amphiphilic hyper branched macromolecules exhibiting antimicrobial properties, Chem. Commun. 24 (2002) 3018-3019.

    12. [12]

      [12] T. Klaus, R. Joerger, E. Olsson, C.G. Granqvist, Silver-based crystalline nanoparticles, microbially fabricated, Proc. Natl. Acad. Sci. U. S. A. 96 (1999) 13611-13614.

    13. [13]

      [13] S.C. Tang, X.K.Meng, H.B. Lu, S.P. Zhu, PVP-assisted sonoelectrochemical growth of silver nanostructures with various shapes, Mater. Chem. Phys. 116 (2009) 464-468.

    14. [14]

      [14] S.M. Shaban, I. Aiad, M.M. El-Sukkary, E.A. Soliman, M.Y. El-Awady, One step green synthesis of hexagonal silver nanoparticles and their biological activity, J. Ind. Eng. Chem. 20 (2014) 4473-4481.

    15. [15]

      [15] A. Henglein, Colloidal silver nanoparticles: photochemical preparation and interaction with O2, CCl4, and some metal ions, Chem. Mater. 10 (1998) 444-450.

    16. [16]

      [16] I. Aiad, M.M. El-Sukkary, E.A. Soliman, M.Y. El-Awady, S.M. Shaban, In situ and green synthesis of silver nanoparticles and their biological activity, J. Ind. Eng. Chem. 20 (2014) 3430-3439.

    17. [17]

      [17] A. Taleb, C. Petti, M.P. Pileni, Synthesis of highly monodisperse silver nanoparticles from AOT reverse micelles: a way to 2D and 3D self-organization, Chem. Mater. 9 (1997) 950-959.

    18. [18]

      [18] M. Tsuji, Y. Nishizawa, K. Matsumoto, et al., Rapid synthesis of silver nanostructures by using microwave-polyol method with the assistance of Pt seeds and polyvinylpyrrolidone, Colloids Surf. A 293 (2007) 185-194.

    19. [19]

      [19] G.A. Bhaduri, R. Little, R.B. Khomane, et al., Green synthesis of silver nanoparticles using sunlight, J. Photochem. Photobiol. A 258 (2013) 1-9.

    20. [20]

      [20] S.M. Shaban, I. Aiad, M.M. El-Sukkary, E.A. Soliman, M.Y. El-Awady, Synthesis, surface, thermodynamic properties and biological activity of dimethylaminopropylamine surfactants, J. Ind. Eng. Chem. 20 (2014) 4194-4201.

    21. [21]

      [21] Y.C. Lu, K.S. Chou, A simple and effective route for the synthesis of nano-silver colloidal dispersions, J. Chin. Inst. Chem. Eng. 39 (2008) 673-678.

    22. [22]

      [22] D. Spadaro, E. Barletta, F. Barreca, G. Currò, F. Neri, PMA capped silver nanoparticles produced by UV-enhanced chemical process, Appl. Surf. Sci. 255 (2009) 8403-8408.

    23. [23]

      [23] Z.L. Yang, D.D. Zhai, X. Wang, J. Wei, In situ synthesis of highly monodispersednonaqueous small-sized silver nano-colloids and silver/polymer nanocomposites by ultraviolet photopolymerization, Colloids Surf. A 448 (2014) 107-114.

    24. [24]

      [24] D.N. Muanza, B.W. Kim, K.L. Euler, L. Williams, Antibacterial and antifungal activities of nine medicinal plants from zaire, Int. J. Pharm. 32 (1994) 337-345.

    25. [25]

      [25] ASTM D4412-84, Standard Test Methods for Sulfate-Reducing Bacteria in Water and Water-Formed Deposits, 2009.

    26. [26]

      [26] D.V. Goia, Preparation and formation mechanisms of uniform metallic particles in homogeneous solutions, J. Mater. Chem. 14 (2004) 451-458.

    27. [27]

      [27] M.H. El-Rafie, M.E. El-Naggar, M.A. Ramadan, et al., Environmental synthesis of silver nanoparticles using hydroxypropyl starch and their characterization, Carbohydr. Polym. 86 (2011) 630-635.

    28. [28]

      [28] J. Belloni, M. Mostafavi, H. Remita, J.L. Marignier, M.O. Delcourt, Radiationinduced synthesis of mono- and multi-metallic clusters and nanocolloids, New J. Chem. 22 (1998) 1239-1255.

    29. [29]

      [29] K. Yvon, W. Jeitschko, E. Parthé, LAZYPULVERIX, a computer program, for calculating X-ray and neutron diffraction powder patterns, J. Appl. Crystallogr. 10 (1977) 73-74.

    30. [30]

      [30] M.G. Guzman, J. Dille, S. Godet, Synthesis of silver nanoparticles by chemical reduction method and their antibacterial activity, World Acad. Sci. Eng. Technol. 43 (2008) 357-364.

    31. [31]

      [31] R. Maity, U.N. Maiti, M.K. Mitra, K.K. Chattopadhyay, Synthesis and optical characterization of polymer-capped nanocrystalline ZnS thin films by chemical process, Physica E 33 (2006) 104-109.

    32. [32]

      [32] K. Esumi, A. Suzuki, N. Aihara, K. Usui, K. Torigoe, Preparation of gold colloids with UV irradiation using dendrimers as stabilizer, Langmuir 14 (1998) 3157-3159.

    33. [33]

      [33] A. Henglein, Physicochemical properties of small metal particles in solution: "microelectrode" reactions, chemisorption, composite metal particles, and the atom-to-metal transition, J. Phys. Chem. 97 (1993) 5457-5471.

    34. [34]

      [34] N. Singh, P.K. Khanna, In situ synthesis of silver nano-particles in polymethylmethacrylate, Mater. Chem. Phys. 104 (2007) 367-372.

    35. [35]

      [35] L.C. Courrol, F.R. De Oliveira Silva, L. Gomes, A simple method to synthesize silver nanoparticles by photo-reduction, Colloids Surf. A 305 (2007) 54-57.

    36. [36]

      [36] M.V. Roldá n, L.B. Scaffardi, O. De Sanctis, N. Pellegri, Optical properties and extinction spectroscopy to characterize the synthesis of amine capped silver nanoparticles, Mater. Chem. Phys. 112 (2008) 984-990.

    37. [37]

      [37] Y. Zhang, M. Yang, N.G. Portney, et al., Zeta potential: a surface electrical characteristic to probe the interaction of nanoparticles with normal and cancer human breast epithelial cells, Biomed. Microdevices 10 (2008) 321-328.

    38. [38]

      [38] J. Ho, M.K. Danquah, H.T. Wang, G.M. Forde, Protein loaded mesoporous silica spheres as a controlled delivery platform, J. Chem. Technol. Biotechnol. 83 (2008) 351-358.

    39. [39]

      [39] J. Hedberg, M. Lundin, T. Lowe, et al., Interactions between surfactants and silver nanoparticles of varying charge, J. Colloid Interface Sci. 369 (2012) 193-201.

    40. [40]

      [40] B.H. Loo, Enhanced Raman spectroscopic study of interactions of tetracyanoethylene molecules with copper surfaces, J. Mol. Struct. 661-662 (2003) 451-457.

    41. [41]

      [41] N.B. Colthup, L.H. Daly, S.E. Wiberly, Introduction to Infrared and Raman Spectroscopy, 3rd ed., Academic Press, San Diego, 1990.

    42. [42]

      [42] R. Janardhanan, M. Karuppaiah, N. Hebalkar, T.N. Rao, Synthesis and surface chemistry of nano silver particles, Polyhedron 28 (2009) 2522-2530.

    43. [43]

      [43] R.A. Prabu, A.P. Rajan, Review on the therapeutic potential of Vitex negundo Linn, J. Pharm. Res. 3 (2010) 1920-1922.

    44. [44]

      [44] P. Balgavý, F. Devínsky, Cut-off effects in biological activities of surfactants, Adv. Colloid Interface Sci. 66 (1996) 23-63.

    45. [45]

      [45] J. Pernak, J. Kalewska, H. Ksyciń ska, J. Cybulski, Synthesis and anti-microbial activities of some pyridinium salts with alkoxymethyl hydrophobic group, Eur. J. Med. Chem. 36 (2001) 899-907.

    46. [46]

      [46] G. Viscardi, P.L. Quagliotto, C. Barolo, et al., Synthesis and surface and antimicrobial properties of novel cationic surfactants, J. Org. Chem. 65 (2000) 8197-8203.

    47. [47]

      [47] H. Nagamune, T. Maeda, K. Ohkura, et al., Evaluation of the cytotoxic effects of bisquaternary ammonium antimicrobial reagents on human cells, Toxicol. In Vitro 14 (2000) 139-147.

    48. [48]

      [48] C. Campanac, L. Pineau, A. Payard, G. Baziard-Mouysset, C. Roques, Interactions between biocide cationic agents and bacterial biofilms, Antimicrob. Agents Chemother. 46 (2002) 1469-1474.

    49. [49]

      [49] M.J. Pringle, K.B. Brown, K.W. Miller, Can the lipid theories of anesthesia account for the cutoff in anesthetic potency in homologous series of alcohols? Mol. Pharmacol. 19 (1981) 49-55.

    50. [50]

      [50] A.S. Janoff, M.J. Pringle, K.W. Miller, Correlation of general anesthetic potency with solubility in membranes, Biochim. Biophys. Acta 649 (1981) 125-128.

  • 加载中
    1. [1]

      Yu MaoYilin LiuXiaochen WangShengyang NiYi PanYi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443

    2. [2]

      Wenya Jiang Jianyu Wei Kuan-Guan Liu . Atomically precise superatomic silver nanoclusters stabilized by O-donor ligands. Chinese Journal of Structural Chemistry, 2024, 43(9): 100371-100371. doi: 10.1016/j.cjsc.2024.100371

    3. [3]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    4. [4]

      Lin Zhang Chaoran Li Thongthai Witoon Xingda An Le He . Nano-thermometry in photothermal catalysis. Chinese Journal of Structural Chemistry, 2025, 44(4): 100456-100456. doi: 10.1016/j.cjsc.2024.100456

    5. [5]

      Jie RenHao ZongYaqun HanTianyi LiuShufen ZhangQiang XuSuli Wu . Visual identification of silver ornament by the structural color based on Mie scattering of ZnO spheres. Chinese Chemical Letters, 2024, 35(9): 109350-. doi: 10.1016/j.cclet.2023.109350

    6. [6]

      Ya-Wen Zhang Ming-Ming Gan Li-Ying Sun Ying-Feng Han . Supramolecular dinuclear silver(I) and gold(I) tetracarbene metallacycles and fluorescence sensing of penicillamine. Chinese Journal of Structural Chemistry, 2024, 43(9): 100356-100356. doi: 10.1016/j.cjsc.2024.100356

    7. [7]

      Huihui LIUBaichuan ZHAOChuanhui WANGZhi WANGCongyun ZHANG . Green synthesis of MIL-101/Au composite particles and their sensitivity to Raman detection of thiram. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2021-2030. doi: 10.11862/CJIC.20240059

    8. [8]

      Xianping DuYing HuangChen ChenZhenhe FengMeng Zong . Encapsulating Si particles in multiple carbon shells with pore-rich for constructing free-standing anodes of lithium storage. Chinese Chemical Letters, 2024, 35(12): 109990-. doi: 10.1016/j.cclet.2024.109990

    9. [9]

      Peiwen LiuFang ZhaoJing ZhangYunpeng BaiJinxing YeBo BaoXinggui ZhouLi ZhangChanglu ZhouXinhai YuPeng ZuoJianye XiaLian CenYangyang YangGuoyue ShiLin XuWeiping ZhuYufang XuXuhong Qian . Micro/nano flow chemistry by Beyond Limits Manufacturing. Chinese Chemical Letters, 2024, 35(5): 109020-. doi: 10.1016/j.cclet.2023.109020

    10. [10]

      Shuangying LiQingxiang ZhouZhi LiMenghua LiuYanhui Li . Sensitive measurement of silver ions in environmental water samples integrating magnetic ion-imprinted solid phase extraction and carbon dot fluorescent sensor. Chinese Chemical Letters, 2024, 35(5): 108693-. doi: 10.1016/j.cclet.2023.108693

    11. [11]

      Jie WuXiaoqing YuGuoxing LiSu Chen . Engineering particles towards 3D supraballs-based passive cooling via grafting CDs onto colloidal photonic crystals. Chinese Chemical Letters, 2024, 35(4): 109234-. doi: 10.1016/j.cclet.2023.109234

    12. [12]

      Peng ZhangYitao YangTian QinXueqiu WuYuechang WeiJing XiongXi LiuYu WangZhen ZhaoJinqing JiaoLiwei Chen . Interface engineering of Pt/CeO2-{100} catalysts for enhancing catalytic activity in auto-exhaust carbon particles oxidation. Chinese Chemical Letters, 2025, 36(2): 110396-. doi: 10.1016/j.cclet.2024.110396

    13. [13]

      Kunsong HuYulong ZhangJiayi ZhuJinhua MaiGang LiuManoj Krishna SugumarXinhua LiuFeng ZhanRui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423

    14. [14]

      Xiaoyu Zhang Xin Yu . Solar-powered heterogeneous water disinfection nano-system. Chinese Journal of Structural Chemistry, 2025, 44(3): 100439-100439. doi: 10.1016/j.cjsc.2024.100439

    15. [15]

      Tianli Hui Tao Zheng Xiaoluo Cheng Tonghui Li Rui Zhang Xianghai Meng Haiyan Liu Zhichang Liu Chunming Xu . A review of plasma treatment on nano-microstructure of electrochemical water splitting catalysts. Chinese Journal of Structural Chemistry, 2025, 44(3): 100520-100520. doi: 10.1016/j.cjsc.2025.100520

    16. [16]

      Bing NiuHonggao HuangLiwei LuoLi ZhangJianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431

    17. [17]

      Kun-Heng LiHong-Yang ZhaoDan-Dan WangMing-Hui QiZi-Jian XuJia-Mi LiZhi-Li ZhangShi-Wen Huang . Mitochondria-targeted nano-AIEgens as a powerful inducer for evoking immunogenic cell death. Chinese Chemical Letters, 2024, 35(5): 108882-. doi: 10.1016/j.cclet.2023.108882

    18. [18]

      Fengyun LiZerong PeiShuting ChenGen liMengyang LiuLiqin DingJingbo LiuFeng Qiu . Multifunctional nano-herb based on tumor microenvironment for enhanced tumor therapy of gambogic acid. Chinese Chemical Letters, 2024, 35(5): 108752-. doi: 10.1016/j.cclet.2023.108752

    19. [19]

      Jia-Mei QinXue LiWei LangFu-Hao ZhangQian-Yong Cao . An AIEgen nano-assembly for simultaneous detection of ATP and H2S. Chinese Chemical Letters, 2024, 35(6): 108925-. doi: 10.1016/j.cclet.2023.108925

    20. [20]

      Wenjuan JinZelong ChenYi WangJiaxuan LiJiahui LiYuxin PeiZhichao Pei . Nano metal-photosensitizer based on Aza-BODIPY-Cu complex for CDT-enhanced dual phototherapy. Chinese Chemical Letters, 2024, 35(7): 109328-. doi: 10.1016/j.cclet.2023.109328

Metrics
  • PDF Downloads(0)
  • Abstract views(771)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return