Citation: Ning Zhu, Hua Gong, Wei Han, Wen-Bo Zeng, Hai-Xin Wang, Zheng Fang, Xin Li, Kai Zhang, Zhen-Jiang Li, Kai Guo. Synthesis and characterization of star-branched polyamide 6 via anionic ring-opening polymerization with N,N', N''-trimesoyltricaprolactam as a multifunctional activator[J]. Chinese Chemical Letters, ;2015, 26(11): 1389-1392. doi: 10.1016/j.cclet.2015.06.005 shu

Synthesis and characterization of star-branched polyamide 6 via anionic ring-opening polymerization with N,N', N''-trimesoyltricaprolactam as a multifunctional activator

  • Corresponding author: Kai Guo, 
  • Received Date: 7 April 2015
    Available Online: 2 June 2015

  • Star-branched polyamide 6 was prepared via anionic ring-opening polymerization of e-caprolactam in the presence of a simple benzene-centered trifunctional activator of N,N',N''-trimesoyltricaprolactam. A high polymer yields of above 95% were achieved at 160 ℃ for 15 min utilizing ε-caprolactammagnesium bromide as a catalyst. Compared with its linear counterpart, the resultant star-branched polyamide 6 showed smaller relative viscosity (1.51), decreasedmelting temperature (218 ℃) and lower crystallinity (24.2%). The specific properties demonstrated the existence of a star-branched structure and provided potential advantages in engineering applications.
  • 加载中
    1. [1]

      [1] F. Jia, J.L. Mao, X.Y. Yang, Y. Ma, C. Yao, Thermal, physical and mechanical properties of hydrogenated dimer acid-based Nylon 636/Nylon 66 copolymers, Chin. Chem. Lett. 24 (2013) 654-658.

    2. [2]

      [2] Z. Xu, C. Gao, In situ polymerization approach to graphene-reinforced nylon-6 composites, Macromolecules 43 (2010) 6716-6723.

    3. [3]

      [3] M. Ghaemy, H. Behmadi, R. Alizadeh, Synthesis of organosoluble polyamides with bulky triaryl imidazole pendent group, Chin. Chem. Lett. 20 (2009) 961-964.

    4. [4]

      [4] S. Naumann, S. Epple, C. Bonten, M.R. Buchmeiser, Polymerization of ε-caprolactam by latent precatalysts based on protected N-heterocyclic carbenes, ACS Macro Lett. 2 (2013) 609-612.

    5. [5]

      [5] Z.Y. Wu, W. Xu, J.K. Xia, et al., Flame retardant polyamide 6 by in situ polymerization of e-caprolactam in the presence of melamine derivatives, Chin. Chem. Lett. 19 (2008) 241-244.

    6. [6]

      [6] W.L. Chang, K.C. Frisch, K. Ashida, Anionic polymerization of star-shaped nylon 6 with a trifunctional initiator, J. Polym. Sci. A: Polym. Chem. 27 (1989) 3637-3649.

    7. [7]

      [7] K. Miyata, Y. Watanabe, T. Itaya, T. Tanigaki, K. Inoue, Synthesis of heteroarm starshaped block copolymers with cyclotriphosphazene core and their compatibilizing effects on PPO/Nylon 6 blends, Macromolecules 29 (1996) 3694-3700.

    8. [8]

      [8] N. Hasegawa, A. Usuki, A. Okada, Thermal properties of novel star-shaped nylon 6, Kobunshi Ronbushu 53 (1996) 537-541.

    9. [9]

      [9] A. Usuki, N. Hasegawa, A. Okada, T. Kurauchi, Synthesis and properties of novel star-shaped nylon6, Kobunshi Ronbushu 52 (1995) 576-581.

    10. [10]

      [10] J.M. Warakomski, Synthesis and properties of star-branched nylon 6, Chem. Mater. 4 (1992) 1000-1004.

    11. [11]

      [11] F. Zhang, L. Zhou, Y.C. Liu, W.J. Xu, Y.Q. Xiong, High-flow nylon 6 by in situ polymerization: synthesis and characterization, J. Appl. Polym. Sci. 108 (2008) 2365-2372.

    12. [12]

      [12] L.X. Dai, N.X. Huang, Z.L. Tang, K.-D. Hungenberg, Preparation and characterization of polyamide-6 with three-branched chains, J. Appl. Polym. Sci. 82 (2001) 3184-3193.

    13. [13]

      [13] P. Fu, M.L. Wang, M.Y. Liu, et al., Preparation and characterization of star-shaped nylon 6 with high flowability, J. Polym. Res. 18 (2011) 651-657.

    14. [14]

      [14] K. Hashimoto, Ring-opening polymerization of lactams. Living anionic polymerization and its applications, Prog. Polym. Sci. 25 (2000) 1411-1462.

    15. [15]

      [15] J.C. Farias-Aguilar, M.J. Ramírez-Moreno, L. Té llez-Jurado, L.H. Balmori-Ramírez, Low pressure and low temperature synthesis of polyamide-6 (PA6) using Na0 as catalyst, Mater. Lett. 16 (2014) 388-392.

    16. [16]

      [16] Y.A. Piskun, I.V. Vasilenko, L.V. Gaponik, S.V. Kostjuk, Activated anionic ringopening polymerization of ε-caprolactam with magnesium di(e-caprolactamate) as initiator: effect of magnesium halides, Polym. Bull. 68 (2012) 1501-1513.

    17. [17]

      [17] T.V. Volkova, Y.S. Vygodskii, O.N. Zabegaeva, et al., Synthesis and characterization of grafted copolymers of aromatic polyimides and e-caprolactam, J. Appl. Polym. Sci. 114 (2009) 577-586.

    18. [18]

      [18] Y. Pae, Preparation and characterization of polyimide-g-nylon 6 copolymers from nonfunctionalized polyimides, J. Appl. Polym. Sci. 99 (2006) 292-299.

    19. [19]

      [19] E.A. González-De Los Santos, A.S. Ló pez-rodríguez, M.J. Lozano-gonzá lez, F. Soriano- Corral, Starlike Nylon 6/polyurethane block copolymers by reaction injection- molding process (RIM), J. Appl. Polym. Sci. 80 (2001) 2483-2494.

    20. [20]

      [20] N. Gigant, I. Gillaizeau, Construction of nitrogen-fused tetrahydroquinolines via a domino reaction, Org. Lett. 14 (2012) 4622-4625.

    21. [21]

      [21] N. Barhoumi, A. Maazouz, M. Jazir, R. Abdelhedi, Polyamide from lactams by reactive rotational molding via anionic ring-opening polymerization: optimization of processing parameters, Express Polym. Lett. 7 (2013) 76-87.

    22. [22]

      [22] B.G. Risch, G.L. Wilkes, J.M. Warakomski, Crystallization kinetics and morphological features of star-branched nylon-6: effect of branch-point functionality, Polymer 34 (1993) 2330-2343.

    23. [23]

      [23] E. Casazza, L. Ricco, S. Russo, E. Scamporrino, Nature of a low molar mass peak in anionic poly(ε-caprolactam). Its identification as macrocyclic ensemble, Macromolecules 40 (2007) 739-745.

    24. [24]

      [24] J. Myers, Z. Chen, Surface plasma treatment effects on the molecular structure at polyimide/air and buried polyimide/epoxy interfaces, Chin. Chem. Lett. 26 (2015) 449-454.

  • 加载中
    1. [1]

      Zhili LiQijun WoDongdong HuangDezhong ZhouLei GuoYeqing Mao . Improving gene transfection efficiency of highly branched poly(β-amino ester)s through the in-situ conversion of inactive terminal groups. Chinese Chemical Letters, 2024, 35(8): 109737-. doi: 10.1016/j.cclet.2024.109737

    2. [2]

      Xiaoman DangZhiying WuTangxin XiaoZhouyu WangLeyong Wang . Highly robust supramolecular polymer networks crosslinked by metallacycles. Chinese Chemical Letters, 2024, 35(12): 110208-. doi: 10.1016/j.cclet.2024.110208

    3. [3]

      Yaohua Li Qi Cao Xuanhua Li . Tailoring the configuration of polymer passivators in perovskite solar cells. Chinese Journal of Structural Chemistry, 2025, 44(2): 100413-100413. doi: 10.1016/j.cjsc.2024.100413

    4. [4]

      Fei YinErli YangXue GeQian SunFan MoGuoqiu WuYanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753

    5. [5]

      Xinyu YuFei WuXianglang SunLinna ZhuBaoyu XiaZhong'an Li . Low-cost dopant-free fluoranthene-based branched hole transporting materials for efficient and stable n-i-p perovskite solar cells. Chinese Chemical Letters, 2024, 35(10): 109821-. doi: 10.1016/j.cclet.2024.109821

    6. [6]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    7. [7]

      Mengjun SunZhi WangJvhui JiangXiaobing WangChuang Yu . Gelation mechanisms of gel polymer electrolytes for zinc-based batteries. Chinese Chemical Letters, 2024, 35(5): 109393-. doi: 10.1016/j.cclet.2023.109393

    8. [8]

      Huimin Gao Zhuochen Yu Xuze Zhang Xiangkun Yu Jiyuan Xing Youliang Zhu Hu-Jun Qian Zhong-Yuan Lu . A mini review of the recent progress in coarse-grained simulation of polymer systems. Chinese Journal of Structural Chemistry, 2024, 43(5): 100266-100266. doi: 10.1016/j.cjsc.2024.100266

    9. [9]

      Dong LvXuelei LiuWei LiQiang ZhangXinhong YuYanchun Han . Single droplet formation by controlling the viscoelasticity of polymer solutions during inkjet printing. Chinese Chemical Letters, 2024, 35(6): 109401-. doi: 10.1016/j.cclet.2023.109401

    10. [10]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

    11. [11]

      Shaohua ZhangXiaojuan DaiWei HaoLiyao LiuYingqiao MaYe ZouJia ZhuChong-an Di . A first-principles study of the Nernst effect in doped polymer. Chinese Chemical Letters, 2024, 35(12): 109837-. doi: 10.1016/j.cclet.2024.109837

    12. [12]

      Xu Li Yue Zhao Tingli Ma . Improved polymer electrolyte interfacial contact via constructing vertically aligned fillers. Chinese Journal of Structural Chemistry, 2025, 44(2): 100406-100406. doi: 10.1016/j.cjsc.2024.100406

    13. [13]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    14. [14]

      Yuanzhe Lu Yuanqin Zhu Linfeng Zhong Dingshan Yu . Long-lifespan aqueous alkaline and acidic batteries enabled by redox conjugated covalent organic polymer anodes. Chinese Journal of Structural Chemistry, 2024, 43(3): 100249-100249. doi: 10.1016/j.cjsc.2024.100249

    15. [15]

      Qianqian SongYunting ZhangJianli LiangSi LiuJian ZhuXingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797

    16. [16]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    17. [17]

      Xin LiXuan DingJunkun ZhouHui ShiZhenxi DaiJiayi LiuYongcun MaPenghui ShaoLiming YangXubiao Luo . Utilizing synergistic effects of bifunctional polymer hydrogel PAM-PAMPS for selective capture of Pb(Ⅱ) from wastewater. Chinese Chemical Letters, 2024, 35(7): 109158-. doi: 10.1016/j.cclet.2023.109158

    18. [18]

      Lei ZhouYoujun ZhouLizhen FangYiqiao BaiYujia MengLiang LiJie YangYong Yao . Pillar[5]arene based artificial light-harvesting supramolecular polymer for efficient and recyclable photocatalytic applications. Chinese Chemical Letters, 2024, 35(9): 109509-. doi: 10.1016/j.cclet.2024.109509

    19. [19]

      Fereshte Hassanzadeh-AfruziMina AziziIman ZareEhsan Nazarzadeh ZareAnwarul HasanSiavash IravaniPooyan MakvandiYi Xu . Advanced metal-organic frameworks-polymer platforms for accelerated dermal wound healing. Chinese Chemical Letters, 2024, 35(11): 109564-. doi: 10.1016/j.cclet.2024.109564

    20. [20]

      Mengyuan LiXitong RenYanmei GaoMengyao MuShiping ZhuShufang TianMinghua Lu . Constructing bifunctional magnetic porous poly(divinylbenzene) polymer for high-efficient removal and sensitive detection of bisphenols. Chinese Chemical Letters, 2024, 35(12): 109699-. doi: 10.1016/j.cclet.2024.109699

Metrics
  • PDF Downloads(0)
  • Abstract views(809)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return