Citation: Xiu-Ying Hu, Qing-Xin Liu, Di Ma, Zhong Liu, Yong Kong, Huai-Guo Xue. One-step synthesis of MnO2 doped poly(aniline-co-o-aminophenol) and the capacitive behaviors of the conducting copolymer[J]. Chinese Chemical Letters, ;2015, 26(11): 1367-1370. doi: 10.1016/j.cclet.2015.06.003 shu

One-step synthesis of MnO2 doped poly(aniline-co-o-aminophenol) and the capacitive behaviors of the conducting copolymer

  • Corresponding author: Yong Kong,  Huai-Guo Xue, 
  • Received Date: 9 March 2015
    Available Online: 19 May 2015

  • MnO2 was doped into a conducting copolymer, poly(aniline-co-o-aminophenol) (PANOA), via a one-step process during the chemical oxidative polymerization. The doping of MnO2 could enhance the electrochemical activity and reversibility of the copolymer. When used as the electrode materials of a supercapacitor, the capacitive behaviors of the as-prepared PANOA-MnO2 were superior to those of pure PANOA, especially at high potential scan rate and high charge-discharge current density. The MnO2 doped copolymer also had an excellent cyclic performance.
  • 加载中
    1. [1]

      [1] M.M. Maricq, J.S. Waugh, A.G. MacDiarmid, H. Shirakawa, A.J. Heeger, Carbon-13 nuclear magnetic resonance of cis- and trans-polyacetylenes, J. Am. Chem. Soc. 100 (1978) 7729-7730.

    2. [2]

      [2] M. Kalaji, P.J. Murphy, G.O. Williams, The study of conducting polymers for use as redox supercapacitors, Synth. Met. 102 (1999) 1360-1361.

    3. [3]

      [3] S.P. Luo, Q.X. Liu, Z. Liu, et al., Electrochemical polymerization of 2,6-pyridinediamine and characterization of the resulting polymer, Chin. Chem. Lett. 23 (2012) 1311-1314.

    4. [4]

      [4] G.P. Wang, L. Zhang, J.J. Zhang, A review of electrode materials for electrochemical supercapacitors, Chem. Soc. Rev. 41 (2012) 797-828.

    5. [5]

      [5] W.F. Mak, G. Wee, V. Aravindan, et al., High-energy density asymmetric supercapacitor based on electrospun vanadium pentoxide and polyaniline nanofibers in aqueous electrolyte, J. Electrochem. Soc. 159 (2012) A1481-A1488.

    6. [6]

      [6] Z.Z. Zhu, G.C. Wang, M.Q. Sun, X.W. Li, C.Z. Li, Fabrication and electrochemical characterization of polyaniline nanorods modified with sulfonated carbon nanotubes for supercapacitor applications, Electrochim. Acta 56 (2011) 1366-1372.

    7. [7]

      [7] P.A. Basnayaka, M.K. Ram, E.K. Stefanakos, A. Kumar, Supercapacitors based on graphene-polyaniline derivative nanocomposite electrode materials, Electrochim. Acta 92 (2013) 376-382.

    8. [8]

      [8] R.K. Sharma, A.C. Rastogi, S.B. Desu, Manganese oxide embedded polypyrrole nanocomposites for electrochemical supercapacitor, Electrochim. Acta 53 (2008) 7690-7695.

    9. [9]

      [9] Y. Wei, R. Hariharan, S.A. Patel, Chemical and electrochemical copolymerization of aniline with alkyl ring-substituted anilines, Macromolecules 23 (1990) 758-764.

    10. [10]

      [10] S.L. Mu, Electrochemical copolymerization of aniline and o-aminophenol, Synth. Met. 143 (2004) 259-268.

    11. [11]

      [11] Y. Kong, Y. Sha, S.K. Xue, Y. Wei, Poly(aniline-co-p-aminobenzoic acid): a conducting copolymer with broadened useful pH range and electrochemically controllable ion exchange behavior, J. Electrochem. Soc. 161 (2014) H249-H254.

    12. [12]

      [12] C.X. Chen, C. Sun, Y.H. Gao, Amperometric sensor for hydrogen peroxide based on poly(aniline-co-p-aminophenol), Electrochem. Commun. 11 (2009) 450-453.

    13. [13]

      [13] S. Palaniappan, S.B. Sydulu, P. Srinivas, Synthesis of copolymer of aniline and pyrrole by inverted emulsion polymerization method for supercapacitor, J. Appl. Polym. Sci. 115 (2010) 1695-1701.

    14. [14]

      [14] J.F. Lu, L. Wang, Q.Y. Lai, H.Y. Chu, Y. Zhao, Study of capacitive properties in supercapacitor for copolymer of aniline with m-phenylenediamine, J. Solid State Electrochem. 13 (2009) 1803-1810.

    15. [15]

      [15] X.F. Yang, G.C. Wang, R.Y. Wang, X.W. Li, A novel layered manganese oxide/ poly(aniline-co-o-anisidine) nanocomposite and its application for electrochemical supercapacitor, Electrochim. Acta 55 (2010) 5414-5419.

    16. [16]

      [16] W.Q. Zhou, X.M. Ma, F.X. Jiang, et al., Electrochemical fabrication of a porous network MnO2/poly(5-cyanoindole) composite and its capacitance performance, Electrochim. Acta 138 (2014) 270-277.

    17. [17]

      [17] A. Bahloul, B. Nessark, E. Briot, et al., Polypyrrole-covered MnO2 as electrode material for supercapacitor, J. Power Sources 240 (2013) 267-272.

    18. [18]

      [18] F.J. Liu, Electrodeposition of manganese dioxide in three-dimensional poly(3,4- ethylenedioxythiophene)-poly(styrene sulfonic acid)-polyaniline for supercapacitor, J. Power Sources 182 (2008) 383-388.

    19. [19]

      [19] C. Wang, Y. Zhan, L.X. Wu, Y.Y. Li, J.P. Liu, High-voltage and high-rate symmetric supercapacitor based on MnO2-polypyrrole hybrid nanofilm, Nanotechnology 25 (2014) 305401-305410.

    20. [20]

      [20] Jaidev, R.I. Jafri, A.K. Mishra, S. Ramaprabhu, Polyaniline-MnO2 nanotube hybrid nanocomposite as supercapacitor electrode material in acidic electrolyte, J. Mater. Chem. 21 (2011) 17601-17605.

    21. [21]

      [21] Y.H. Jin, M.Q. Jia, Preparation and electrochemical capacitive performance of polyaniline nanofiber-graphene oxide hybrids by oil-water interfacial polymerization, Synth. Met. 189 (2014) 47-52.

    22. [22]

      [22] J. Han, L.Y. Li, P. Fang, R. Guo, Ultrathin MnO2 nanorods on conducting polymer nanofibers as a new class of hierarchical nanostructures for high-performance supercapacitors, J. Phys. Chem. C 116 (2012) 15900-15907.

    23. [23]

      [23] Z.F. Li, H.Y. Zhang, Q. Liu, et al., Fabrication of high-surface-area graphene/ polyaniline nanocomposites and their application in supercapacitors, ACS Appl. Mater. Interfaces 5 (2013) 2685-2691.

  • 加载中
    1. [1]

      Yixin LuMinghan QinShixian ZhangZhen LiuWang SunZhenhua WangJinshuo QiaoKening Sun . Triple-conducting heterostructure anodes for electrochemical ethane nonoxidative dehydrogenation by protonic ceramic electrolysis cells. Chinese Chemical Letters, 2025, 36(4): 110567-. doi: 10.1016/j.cclet.2024.110567

    2. [2]

      Yiwen LinYijie ChenChunhui DengNianrong Sun . Integration of resol/block-copolymer carbonization and machine learning: A convenient approach for precise monitoring of glycan-associated disorders. Chinese Chemical Letters, 2024, 35(12): 109813-. doi: 10.1016/j.cclet.2024.109813

    3. [3]

      Changlin SuWensheng CaiXueguang Shao . Water as a probe for the temperature-induced self-assembly transition of an amphiphilic copolymer. Chinese Chemical Letters, 2025, 36(4): 110095-. doi: 10.1016/j.cclet.2024.110095

    4. [4]

      Qian WangTing GaoXiwen LuHangchao WangMinggui XuLongtao RenZheng ChangWen Liu . Nanophase separated, grafted alternate copolymer styrene-maleic anhydride as an efficient room temperature solid state lithium ion conductor. Chinese Chemical Letters, 2024, 35(7): 108887-. doi: 10.1016/j.cclet.2023.108887

Metrics
  • PDF Downloads(0)
  • Abstract views(717)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return