Citation: Jing Shi, Jia-Wei Teng, Yang-Dong Wang, Yi Tang, Zai-Ku Xie. Precise construction on the structure of zeolite microcapsules[J]. Chinese Chemical Letters, ;2015, 26(11): 1409-1414. doi: 10.1016/j.cclet.2015.06.001 shu

Precise construction on the structure of zeolite microcapsules

  • Corresponding author: Jing Shi,  Zai-Ku Xie, 
  • Received Date: 31 March 2015
    Available Online: 11 May 2015

  • In this paper, the precise construction on the structure of silicalite-1 microcapsules (S1) was specifically described. The interior carbon modifications and the outside mesoporous functionalizations were successfully conducted and each sample was characterized in detail. It was found that the carbon networks could be formed inside the zeolite microcapsules via the pretreatment of sugar injections. The uniformity of the distinct microcapsule could be regulated by adjusting the sugar concentrations. With the encapsulated Pt species inside the MSSs, the nano-particles could be dispersed well within the carbon network. On the other hand, during the fabrication of the mesoporous materials outside the microcapsules, the template and the acidity of the system could play an important role in determining the morphology of S1. Besides, the PDDA modification on the shell of S1 could help the combination of the meso-layer and the shell of S1 at nano-scale. The thickness of the outside mesopore could be modulated through the controlling of the silica content.
  • 加载中
    1. [1]

      [1] A. Corma, From microporous to mesoporous molecular sieve materials and their use in catalysis, Chem. Rev. 97 (1997) 2373-2420.

    2. [2]

      [2] M.E. Davis, Ordered porous materials for emerging applications, Nature 417 (2002) 813-821.

    3. [3]

      [3] D. Trong On, S. Kaliaguine, Zeolite-coated mesostructured cellular silica foams, J. Am. Chem. Soc. 125 (2003) 618-619.

    4. [4]

      [4] G.J. de, A.A. Soler-illia, C. Sanchez, B. Lebeau, J. Patarin, Chemical strategies to design textured materials: from microporous and mesoporous oxides to nano net works and hierarchical structures, Chem. Rev. 102 (2002) 4093-4138.

    5. [5]

      [5] T.O. Do, A. Nossov, M.A. Springuel-Huet, et al., Zeolite nanoclusters coated onto the mesopore walls of SBA-15, J. Am. Chem. Soc. 126 (2004) 14324-14325.

    6. [6]

      [6] C. Galeano, R. Guttel, M. Paul, et al., Yolk-shell gold nanoparticles as model materials for support-effect studies in heterogeneous catalysis: Au, @C and Au, @ZrO2for CO oxidation as an example, Chem. Eur. J. 17 (2011) 8434-8439.

    7. [7]

      [7] W.R. Zhao, J.L. Gu, L.X. Zhang, H.R. Chen, J.L. Shi, Fabrication of uniform magnetic nanocomposite spheres with a magnetic core/mesoporous silica shell structure, J. Am. Chem. Soc. 127 (2005) 8916-8917.

    8. [8]

      [8] J. Kim, J.E. Lee, J. Lee, et al., Magnetic fluorescent delivery vehicle using uniform mesoporous silica spheres embedded with monodisperse magnetic and semiconductor nanocrystals, J. Am. Chem. Soc. 128 (2006) 688-689.

    9. [9]

      [9] S.H. Joo, J.Y. Park, C.K. Tsung, et al., Thermally stable Pt/mesoporous silica core- shell nanocatalysts for high-temperature reactions, Nat. Mater. 8 (2009) 126-131.

    10. [10]

      [10] Y.H. Deng, Y. Cai, Z.K. Sun, et al., Multifunctional mesoporous composite microspheres with well-designed nanostructure: a highly integrated catalyst system, J. Am. Chem. Soc. 132 (2010) 8466-8473.

    11. [11]

      [11] F. Schuth, W. Schmidt, Microporous and mesoporous materials, Adv. Mater. 14 (2002) 629-638.

    12. [12]

      [12] Y. Wan, D.Y. Zhao, Controllable soft-templating approach to mesoporous silicates, Chem. Rev. 107 (2007) 2821-2860.

    13. [13]

      [13] A. Vinu, V. Murugesan, W. Bohlmann, M. Hartmann, An optimized procedure for the synthesis of AlSBA-15 with large pore diameter and high aluminum content, J. Phys. Chem. B 108 (2004) 11496-11505.

    14. [14]

      [14] A. Vinu, J. Justus, C. Anand, et al., Hexagonally ordered mesoporous highly acidic AlSBA-15 with different morphology: an efficient catalyst for acetylation of aromatics, Microporous Mesoporous Mater. 116 (2008) 108-115.

    15. [15]

      [15] Y.H. Deng, D.W. Qi, C.H. Deng, X.M. Zhang, D.Y. Zhao, Superparamagnetic highmagnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins, J. Am. Chem. Soc. 130 (2008) 28-29.

    16. [16]

      [16] Z.M. Wang, W.D. Wang, N. Coombs, N. Soheilnia, G.A. Ozin, Graphene oxideperiodic mesoporous silica sandwich nano composites with vertically oriented channels, ACS Nano 4 (2010) 7437-7450.

    17. [17]

      [17] X.F. Qian, B. Li, Y.Y. Hu, et al., Exploring meso-/microporous composite molecular sieves with core-shell structures, Chem. Eur. J. 18 (2012) 931-939.

    18. [18]

      [18] J.S. Yu, S.B. Yoon, Y.J. Lee, K.B. Yoon, Fabrication of bimodal porous silicate with silicalite-1 core mesoporous shell structures and synthesis of nonspherical carbon and silica nano cases with hollow core/mesoporous shell structures, J. Phys. Chem. B 109 (2005) 7040-7045.

    19. [19]

      [19] Y. Han, P. Pitukmanorom, L. Zhao, J.Y. Ying, Generalized synthesis of mesoporous shells on zeolite crystals, Small 7 (2011) 326-332.

    20. [20]

      [20] L. Xu, Y.J. Ren, H.H. Wu, et al., Core/shell-structured TS-1@mesoporous silicasupported Au nanoparticles for selective epoxidation of propylene with H2 and O2, J. Mater. Chem. 21 (2011) 10852-10858.

    21. [21]

      [21] X.F. Qian, J.M. Du, B. Li, et al., Controllable fabrication of uniform core-shell structured zeolite@SBA-15 composites, Chem. Sci. 2 (2011) 2006-2016.

    22. [22]

      [22] Y. Seo, K. Kim, Y. Jung, R. Ryoo, Synthesis of mesoporous carbons using silica templates impregnated with mineral acids, Microporous Mesoporous Mater. 207 (2015) 156-162.

    23. [23]

      [23] B. Sakintuna, Y. Yü rüm, Templated porous carbons: a review article, Ind. Eng. Chem. Res. 44 (2005) 2893-2902.

    24. [24]

      [24] Y.R. Liu, J. Zhang, Influence of pore symmetries on the super capacitive performance of mesoporous carbons co-templated by F127 and PDMS-PEO, Microporous Mesoporous Mater. 206 (2015) 81-85.

    25. [25]

      [25] X. Feng, G.E. Fryxell, L.Q. Wang, et al., Functionalized mono layers on ordered mesoporous supports, Science 276 (1997) 923-926.

    26. [26]

      [26] S.H. Joo, S.J. Choi, I. Oh, et al., Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles, Nature 412 (2001) 169-172.

    27. [27]

      [27] X.C. Xu, C.S. Song, J.M. André sen, B.G. Miller, A.W. Scaroni, Preparation and characterization of novel CO2 "molecular basket" adsorbents based on polymer- modified mesoporous molecular sieve MCM-41, Microporous Mesoporous Mater. 62 (2003) 29-45.

    28. [28]

      [28] H.S. Zhou, S.M. Zhu, I. Honma, K. Seki, Methane gas storage in self-ordered mesoporous carbon (CMK-3), Chem. Phys. Lett. 396 (2004) 252-255.

    29. [29]

      [29] S.R. Chen, Y.P. Zhai, G.L. Xu, et al., Ordered mesoporous carbon/sulfur nanocomposite of high performances as cathode for lithium-sulfur battery, Electrochim. Acta 56 (2011) 9549-9555.

    30. [30]

      [30] M.H. Zhang, A.X. Sun, Y.L. Meng, et al., High activity ordered mesoporous carbonbased solid acid catalyst for the esterification of free fatty acids, Microporous Mesoporous Mater. 204 (2015) 210-217.

    31. [31]

      [31] J. Shi, N. Ren, Y.H. Zhang, Y. Tang, Studies on formation of hollow silicalite-1 microcapsules, Microporous Mesoporous Mater. 132 (2010) 181-187.

    32. [32]

      [32] J. Shi, X. Li, Q.R. Wang, Y.H. Zhang, Y. Tang, Platinum-encapsulated zeolitically microcapsular catalyst for one-pot dynamic kinetic resolution of phenylethylamine, J. Catal. 291 (2012) 87-94.

    33. [33]

      [33] J. Shi, L.F. Chen, N. Ren, Y.H. Zhang, Y. Tang, Zeolitic microcapsule with encapsulated platinum nanoparticles for one-pot tandem reaction of alcohol to hydrazone, Chem. Commun. 48 (2012) 8583-8585.

  • 加载中
    1. [1]

      Yuhang Li Yang Ling Yanhang Ma . Application of three-dimensional electron diffraction in structure determination of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100237-100237. doi: 10.1016/j.cjsc.2024.100237

    2. [2]

      Yongheng Ren Yang Chen Hongwei Chen Lu Zhang Jiangfeng Yang Qi Shi Lin-Bing Sun Jinping Li Libo Li . Electrostatically driven kinetic Inverse CO2/C2H2 separation in LTA-type zeolites. Chinese Journal of Structural Chemistry, 2024, 43(10): 100394-100394. doi: 10.1016/j.cjsc.2024.100394

    3. [3]

      Jie MaJianxiang WangJianhua YuanXiao LiuYun YangFei Yu . The regulating strategy of hierarchical structure and acidity in zeolites and application of gas adsorption: A review. Chinese Chemical Letters, 2024, 35(11): 109693-. doi: 10.1016/j.cclet.2024.109693

    4. [4]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    5. [5]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    6. [6]

      Naihong Wang Longkang Zhang Yejun Guan Peng Wu Hao Xu . Pt confined in Sn-ECNU-46 zeolite for efficient alkane dehydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100248-100248. doi: 10.1016/j.cjsc.2024.100248

    7. [7]

      Guoliang Liu Zhiqiang Liu Anmin Zheng . Modulation of zeolite surface realizes dynamic copper species redispersion. Chinese Journal of Structural Chemistry, 2024, 43(6): 100308-100308. doi: 10.1016/j.cjsc.2024.100308

    8. [8]

      Jiayu XuMeng LiBaoxia DongLigang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798

    9. [9]

      Zhenzhen Zhao Meichen Jiao Jiejie Ling Han Jiang Yan Gao Hao Xu Hai-Qing Li Jingang Jiang Peng Wu Le Xu . Toward the microporous zeolite family with tunable large-medium cage and pore opening. Chinese Journal of Structural Chemistry, 2024, 43(9): 100336-100336. doi: 10.1016/j.cjsc.2024.100336

    10. [10]

      Tianyao HeGan LiXiaoqiang XieDong HanYunyue LengQiuli ZhangWenming LiuGuobo LiHongxiang ZhangShan HuangTing HuangHonggen Peng . Design of highly active meso-zeolite enveloping Pt–Ni bimetallic catalysts for degradation of toluene. Chinese Chemical Letters, 2025, 36(4): 110137-. doi: 10.1016/j.cclet.2024.110137

    11. [11]

      Lijun YanShiqi ChenPenglu WangXiangyu LiuLupeng HanTingting YanYuejin LiDengsong Zhang . Hydrothermally stable metal oxide-zeolite composite catalysts for low-temperature NOx reduction with improved N2 selectivity. Chinese Chemical Letters, 2024, 35(6): 109132-. doi: 10.1016/j.cclet.2023.109132

Metrics
  • PDF Downloads(0)
  • Abstract views(723)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return