Citation: Na Li, Rui Chen, Jing Miao, Peng Zhou, Hai-Bin Yu, Tie-Hong Chen. Synthesis of single crystal-like hierarchically mesoporous titanosilicate Ti-SBA-1[J]. Chinese Chemical Letters, ;2015, 26(10): 1269-1272. doi: 10.1016/j.cclet.2015.05.053 shu

Synthesis of single crystal-like hierarchically mesoporous titanosilicate Ti-SBA-1

  • Corresponding author: Tie-Hong Chen, 
  • Received Date: 16 April 2015
    Available Online: 22 May 2015

    Fund Project: RFDP (No. 20120031110005) (No. 13JCYBJC18300) the Technology Planning Project of Hunan Province (No. 2014SK2019) (No. 20120031110005) National Science Foundation for Post-doctoral Scientists of China (No. 2014T70774) (No. 2014SK2019)the Scientific Research Fund of Hunan Provincial Education Department (No. 14C0343). (No. 2014T70774)

  • Hierarchically mesoporous titanosilicate Ti-SBA-1 was synthesized with organic mesomorphous complexes of polyelectrolyte (poly(acrylic acid) (PAA)) and cationic surfactant (hexadecyl pyridinium chloride (CPC)) as template, tetraethylsiloxane as silica source and titanium ethoxide as titanium source. By adjusting the amount of titanium ethoxide in the synthesis, a series of Ti-SBA-1 particles with different Si/Ti ratio (79-180) were prepared. After incorporation of Ti into the silica framework thewellordered cubic Pm3n mesostructure remained, as well as the morphology, particle size. UV-vis DR spectra of the Ti-SBA-1 materials indicated that incorporated titaniumspecies existed in a highly dispersed state and exhibited tetrahedral and octahedral coordination in the silica framework.
  • 加载中
    1. [1]

      [1] J. Wei, Q. Yue, Z.K. Sun, Y.H. Deng, D.Y. Zhao, Synthesis of dual-mesoporous silica using non-ionic diblock copolymer and cationic surfactant as co-templates, Angew. Chem. Int. Ed. 51(2012) 6149-6153.

    2. [2]

      [2] H.M. Abdelaal, Fabrication of hollow silica microspheres utilizing a hydrothermal approach, Chin. Chem. Lett. 25(2014) 627-629.

    3. [3]

      [3] L.P. Wang, G. Li, W.Z. Li, et al., Copolymers with fluorescence properties in mesoporous silica SBA-15:synthesis and characterization, Chin. Chem. Lett. 25(2014) 1620-1624.

    4. [4]

      [4] S. Che, A.E. Garcia-Bennett, T. Yokoi, et al., A novel anionic surfactant templating route for synthesizing mesoporous silica with unique structure, Nat. Mater. 2(2003) 801-805.

    5. [5]

      [5] C.B. Gao, Y. Sakamoto, K. Sakamoto, O. Terasaki, S. Che, Synthesis and characterization of mesoporous silica AMS-10 with bicontinuous cubic Pn3m symmetry, Angew. Chem. Int. Ed. 45(2006) 4295-4298.

    6. [6]

      [6] K. Venkatachalam, M. Palanichamy, V. Murugesan, Acetalization of heptanal over Al-SBA-1 molecular sieve, Catal. Commun. 12(2010) 299-303.

    7. [7]

      [7] S. Wu, Y. Han, Y.C. Zou, et al., Synthesis of heteroatom substituted SBA-15 by the "pH-adjusting" method, Chem. Mater. 16(2004) 486-492.

    8. [8]

      [8] F.J. Chen, C.W. Shao, M.N. Zhao, et al., Controllable synthesis and photocatalytic activities of rod-shaped mesoporous titanosilicate composites with varied aspect ratios, Chin. Chem. Lett. 25(2014) 962-966.

    9. [9]

      [9] W.J. Cai, L.P. Qian, B. Yue, H.Y. He, Rh doping effect on coking resistance of Ni/SBA-15 catalysts in dry reforming of methane, Chin. Chem. Lett. 25(2014) 1411-1415.

    10. [10]

      [10] M. Taramasso, G. Perego, B. Notari, Preparation of porous crystalline synthetic material comprised of silicon and titanium oxides, U.S. Patent 4410501, 1983.

    11. [11]

      [11] M.J. Kim, R. Ryoo, Synthesis and pore size control of cubic mesoporous silica SBA-1, Chem. Mater. 11(1999) 487-491.

    12. [12]

      [12] A.E. Garcia-Bennett, K. Miyasaka, O. Terasaki, S. Che, Structural solution of mesocaged material AMS-8, Chem. Mater. 16(2004) 3597-3605.

    13. [13]

      [13] Y. Sakamoto, M. Kaneda, O. Terasaki, et al., Direct imaging of the pores and cages of three-dimensional mesoporous materials, Nature 408(2000) 449-453.

    14. [14]

      [14] T.W. Kim, R. Ryoo, M. Kruk, et al., Tailoring the pore structure of SBA-16 silica molecular sieve through the use of copolymer blends and control of synthesis temperature and time, J. Phys. Chem. B 108(2004) 11480-11489.

    15. [15]

      [15] S.D. Shen, Y. Deng, G.B. Zhu, et al., Synthesis and characterization of Ti-SBA-16 ordered mesoporous silica composite, J. Mater. Sci. 42(2007) 7057-7061.

    16. [16]

      [16] Q.S. Huo, R. Leon, P.M. Petroff, G.D. Stucky, Mesostructure design with Gemini surfactants:supercage formation in a three-dimensional hexagonal array, Science 268(1995) 1324-1327.

    17. [17]

      [17] A. Vinu, V. Murugesan, M. Hartmann, Pore size engineering and mechanical stability of the cubic mesoporous molecular sieve SBA-1, Chem. Mater. 15(2003) 1385-1393.

    18. [18]

      [18] D. Ji, R. Zhao, G.M. Lv, et al., Direct synthesis, characterization and catalytic performance of novel Ti-SBA-1 cubic mesoporous molecular sieves, Appl. Catal. A:Gen. 281(2005) 39-45.

    19. [19]

      [19] A. Vinu, P. Srinivasu, D.P. Sawant, et al., Fabrication and morphological control of three-dimensional cage type mesoporous titanosilicate with extremely high Ti content, Microporous Mesoporous Mater. 110(2008) 422-430.

    20. [20]

      [20] X. Du, J.H. He, Spherical silica micro/nanomaterials with hierarchical structures:synthesis and applications, Nanoscale 3(2011) 3984-4002.

    21. [21]

      [21] Z.L. Hua, J. Zhou, J.L. Shi, Recent advances in hierarchically structured zeolites:synthesis and material performances, Chem. Commun. 47(2011) 10536-10547.

    22. [22]

      [22] M.X. Liu, L.H. Gan, Y. Li, et al., Synthesis and electrochemical performance of hierarchical porous carbons with 3D open-cell structure based on nanosilicaembedded emulsion-templated polymerization, Chin. Chem. Lett. 25(2014) 897-901.

    23. [23]

      [23] Z. Zhou, R.N.K. Taylor, S. Kullmann, H.X. Bao, M. Hartmann, Mesoporous organosilicas with large cage-like pores for high efficiency immobilization of enzymes, Adv. Mater. 23(2011) 2627-2632.

    24. [24]

      [24] N. Li, J.G. Wang, H.J. Zhou, P.C. Sun, T.H. Chen, Synthesis of single-crystal-like, hierarchically nanoporous silica and periodic mesoporous organosilica, using polyelectrolyte-surfactant mesomorphous complexes as a template, Chem. Mater. 23(2011) 4241-4249.

    25. [25]

      [25] G. Li, X.S. Zhao, Characterization and photocatalytic properties of titaniumcontaining mesoporous SBA-15, Ind. Eng. Chem. Res. 45(2006) 3569-3573.

  • 加载中
    1. [1]

      Ke Wang Jia Wu Shuyi Zheng Shibin Yin . NiCo Alloy Nanoparticles Anchored on Mesoporous Mo2N Nanosheets as Efficient Catalysts for 5-Hydroxymethylfurfural Electrooxidation and Hydrogen Generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100104-100104. doi: 10.1016/j.cjsc.2023.100104

    2. [2]

      Lanfang WangJiangnan LvYujia LiYanqing HaoWenjiao LiuHui ZhangXiaohong Xu . One-step synthesis of nanowoven ball-like NiS-WS2 for high-efficiency hydrogen evolution. Chinese Chemical Letters, 2025, 36(1): 109597-. doi: 10.1016/j.cclet.2024.109597

    3. [3]

      Chengcheng XieChengyi XiaoHongshuo NiuGuitao FengWeiwei Li . Mesoporous organic solar cells. Chinese Chemical Letters, 2024, 35(11): 109849-. doi: 10.1016/j.cclet.2024.109849

    4. [4]

      Jie MaJianxiang WangJianhua YuanXiao LiuYun YangFei Yu . The regulating strategy of hierarchical structure and acidity in zeolites and application of gas adsorption: A review. Chinese Chemical Letters, 2024, 35(11): 109693-. doi: 10.1016/j.cclet.2024.109693

    5. [5]

      Weiping XiaoYuhang ChenQin ZhaoDanil BukhvalovCaiqin WangXiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176

    6. [6]

      Ting ShiZiyang SongYaokang LvDazhang ZhuLing MiaoLihua GanMingxian Liu . Hierarchical porous carbon guided by constructing organic-inorganic interpenetrating polymer networks to facilitate performance of zinc hybrid supercapacitors. Chinese Chemical Letters, 2025, 36(1): 109559-. doi: 10.1016/j.cclet.2024.109559

    7. [7]

      Feng CuiFangman ChenXiaochun XieChenyang GuoKai XiaoZiping WuYinglu ChenJunna LuFeixia RuanChuanxu ChengChao YangDan Shao . Scalable production of mesoporous titanium nanoparticles through sequential flash nanocomplexation. Chinese Chemical Letters, 2024, 35(4): 108681-. doi: 10.1016/j.cclet.2023.108681

    8. [8]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    9. [9]

      Yujuan Zhao Zaiwang Zhao . Monolayer mesoporous nanosheets with surface asymmetry via a dual-emulsion-directed monomicelle assembly. Chinese Journal of Structural Chemistry, 2024, 43(2): 100238-100238. doi: 10.1016/j.cjsc.2024.100238

    10. [10]

      Zhaomin TangQian HeJianren ZhouShuang YanLi JiangYudong WangChenxing YaoHuangzhao WeiKeda YangJiajia Wang . Active-transporting of charge-reversal Cu(Ⅱ)-doped mesoporous silica nanoagents for antitumor chemo/chemodynamic therapy. Chinese Chemical Letters, 2024, 35(7): 109742-. doi: 10.1016/j.cclet.2024.109742

    11. [11]

      Yu DengYan LiuYonghui DengJinsheng ChengYidong ZouWei LuoIn situ sulfur-doped mesoporous tungsten oxides for gas sensing toward benzene series. Chinese Chemical Letters, 2024, 35(7): 108898-. doi: 10.1016/j.cclet.2023.108898

    12. [12]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    13. [13]

      Tinghui Yang Min Kuang Jianping Yang . Mesoporous CuCe dual-metal catalysts for efficient electrochemical reduction of CO2 to methane. Chinese Journal of Structural Chemistry, 2024, 43(8): 100350-100350. doi: 10.1016/j.cjsc.2024.100350

    14. [14]

      Jichun LiZhengren WangYu DengHongxiu YuYonghui DengXiaowei ChengKaiping Yuan . Construction of mesoporous silica-implanted tungsten oxides for selective acetone gas sensing. Chinese Chemical Letters, 2024, 35(11): 110111-. doi: 10.1016/j.cclet.2024.110111

    15. [15]

      Bingke ZhangDongbo WangJiamu CaoWen HeGang LiuDonghao LiuChenchen ZhaoJingwen PanSihang LiuWeifeng ZhangXuan FangLiancheng ZhaoJinzhong Wang . Tuning Stark effect by defect engineering on black titanium dioxide mesoporous spheres for enhanced hydrogen evolution. Chinese Chemical Letters, 2024, 35(11): 110254-. doi: 10.1016/j.cclet.2024.110254

    16. [16]

      Jiaxu WangJinxie ZhangXiuping WangJingying WangLina ChenJiahui CaoWei CaoSiyu LiangPing LuanKe ZhengXiao-Kun OuyangLi GaoXiaowen OuFan ZhangMeitong OuLin Mei . CaCO3-coated hollow mesoporous silica nanoparticles for pH-responsive fungicides release. Chinese Chemical Letters, 2024, 35(12): 109697-. doi: 10.1016/j.cclet.2024.109697

    17. [17]

      Guizhi ZhuJunrui TanLongfei TanQiong WuXiangling RenChanghui FuZhihui ChenXianwei Meng . Growth of CeCo-MOF in dendritic mesoporous organosilica as highly efficient antioxidant for enhanced thermal stability of silicone rubber. Chinese Chemical Letters, 2025, 36(1): 109669-. doi: 10.1016/j.cclet.2024.109669

    18. [18]

      Wenjing XiongYulin XuFangzhou ZhaoBaokai XiaHongqiang WangWei LiuSheng ChenYongzhi Zhang . Graphene architecture interpenetrated with mesoporous carbon nanosheets promotes fast and stable potassium storage. Chinese Chemical Letters, 2025, 36(4): 109738-. doi: 10.1016/j.cclet.2024.109738

    19. [19]

      Linjie JuZhongxi HuangQian ShenChan FuShuanghe LiWenjie DuanChenfeng XuWeizhen AnZhiqiang ZhaiJifu WeiChangmin YuGuoren Zhou . Glutathione depletion based Pt(Ⅳ) hybrid mesoporous organosilica delivery system to conquer cisplatin chemoresistance: A “one stone three birds” strategy. Chinese Chemical Letters, 2024, 35(10): 109450-. doi: 10.1016/j.cclet.2023.109450

    20. [20]

      Guang-Xu DuanQueting ChenRui-Rui ShaoHui-Huang SunTong YuanDong-Hao Zhang . Encapsulating lipase on the surface of magnetic ZIF-8 nanosphers with mesoporous SiO2 nano-membrane for enhancing catalytic performance. Chinese Chemical Letters, 2025, 36(2): 109751-. doi: 10.1016/j.cclet.2024.109751

Metrics
  • PDF Downloads(0)
  • Abstract views(664)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return