Citation: Yu-Feng Liu, Ming-Hua Chen, Xiao-Liang Wang, Qing-Lan Guo, Cheng-Gen Zhu, Sheng Lin, Cheng-Bo Xu, Yue-Ping Jiang, Yu-Huan Li, Jian-Dong Jiang, Yan Li, Jian-Gong Shi. Antiviral enantiomers of a bisindole alkaloid with a new carbon skeleton from the roots of Isatis indigotica[J]. Chinese Chemical Letters, ;2015, 26(8): 931-936. doi: 10.1016/j.cclet.2015.05.052 shu

Antiviral enantiomers of a bisindole alkaloid with a new carbon skeleton from the roots of Isatis indigotica

  • Corresponding author: Jian-Gong Shi, 
  • Received Date: 2 April 2015
    Available Online: 26 May 2015

    Fund Project:

  • A pair of indole alkaloid enantiomers with a novel bisindolylacetamide skeleton, insatindibisindolamides A and B (1a and 1b), was isolated from an aqueous extract of Isatis indigotica roots. The enantiomers were separated by chiral HPLC. Their structures and absolute configurations were elucidated by extensive spectroscopic analysis, including 2D NMR, X-ray crystallography, and electronic CD (ECD) calculation. The proposed biosynthetic pathway and preliminary investigations of the biological activity of compounds 1a and 1b are also discussed.
  • 加载中
    1. [1]

      [1] Jiangsu New Medical College, Dictionary of Traditional Chinese Medicine, Shanghai Science and Technology Publishing House, Shanghai, 1986 (pp. 126-127 and 1250-1252).

    2. [2]

      [2] Chinese Pharmacopoeia Commission, Pharmacopoeia of People's Republic of China, Part 1, China Medical Science Press, Beijing, 2010 (pp 20, 191, and 800).

    3. [3]

      [3] A.H. Lin, S.X. Fang, J.G. Fang, et al., Study on anti-endotoxin activity of F022 from radix of Isatidis, Chin. J. Chin. Mater. Med. 27 (2002) 439-442.

    4. [4]

      [4] J.G. Fang, J. Tang, Z.Q. Yang, et al., Effect of radix Isatidis against herpes simplex virus type I in vitro, Chin. Tradit. Herb. Drugs 36 (2005) 242-244.

    5. [5]

      [5] L. Chen, T. Lin, H.X. Zhang, et al., Immune responses to foot-and-mouth disease DNA vaccines can be enhanced by coinjection with the Isatis indigotica extract, Intervirology 48 (2005) 207-212.

    6. [6]

      [6] Y.L. Ho, Y.S. Chang, Studies on the antinociceptive, anti-inflammatory and antipyretic effects of Isatis indigotica root, Phytomedicine 9 (2002) 419-424.

    7. [7]

      [7] S.L. Hsuan, S.C. Chang, S.Y. Wang, et al., The cytotoxicity to leukemia cells and antiviral effects of Isatis indigotica extracts on pseudorabies virus, J. Ethnopharmacol. 123 (2009) 61-67.

    8. [8]

      [8] B. Li, W.S. Chen, S.Q. Zheng, et al., Two new alkaloids isolated from tetraploidy banlangen, Acta Pharm. Sin. 35 (2000) 508-510.

    9. [9]

      [9] W.S. Chen, B. Li, W.D. Zhang, et al., A new alkaloid from the roots of Isatis indigotica Fort, Chin. Chem. Lett. 12 (2001) 501-502.

    10. [10]

      [10] X.Y. Wei, C.Y. Leung, C.K.C. Wong, et al., Bisindigotin, a TCDD antagonist from the Chinese medicinal herb Isatis indigotica, J. Nat. Prod. 68 (2005) 427-429.

    11. [11]

      [11] J.F. Liu, Z.Y. Jiang, R.R. Wang, et al., Isatisine A, a novel alkaloid with an unprecedented skeleton from leaves of Isatis indigotica, Org. Lett. 9 (2007) 4127-4129.

    12. [12]

      [12] Y. Wu, Z.X. Zhang, H. Hu, et al., Novel indole C-glycosides from Isatis indigotica and their potential cytotoxic activity, Fitoterapia 82 (2011) 288-292.

    13. [13]

      [13] L. Yang, G. Wang, M. Wang, et al., Indole alkaloid from the roots of Isatis indigotica and their inhibitory effects on nitric oxide production, Fitoterapia 95 (2014) 175-181.

    14. [14]

      [14] L.W. He, X. Li, J.W. Chen, et al., Chemical constituents from water extract of radix Isatidis, Acta Pharm. Sin. 41 (2006) 1193-1196.

    15. [15]

      [15] L. Zuo, J.B. Li, J. Xu, et al., Studies on chemical constituents in root of Isatis indigotica, Chin. J. Chin. Mater. Med. 32 (2007) 688-691.

    16. [16]

      [16] D.D. Sun, W.W. Dong, X. Li, et al., Isolation, structural determination and cytotoxic activity of two new ceramides from the root of Isatis indigotica, Sci. China B: Chem. 52 (2009) 621-625.

    17. [17]

      [17] D.D. Sun, W.W. Dong, H.Q. Zhang, et al., A new ceramide from the root of Isatis indigotica and its cytotoxic activity, Chem. Nat. Compd. 46 (2010) 180-183.

    18. [18]

      [18] Y. He, J. Lu, R.C. Lin, Studies on chemical constituents in root of Isatis indigotica, Chin. Tradit. Herb. Drugs 34 (2003) 777-778.

    19. [19]

      [19] Q.S. Huang, K. Yoshihira, S. Natori, Isolation of 2-hydroxy-3-butenyl thiocyanate, epigoitrin, and adenosine from ‘banlangen’, Isatis indigotica root, Planta Med. 42 (1981) 308-310.

    20. [20]

      [20] F. Wang, Y.P. Jiang, X.L. Wang, et al., Aromatic glycosides from the flower buds of Lonicera japonica, J. Asian Nat. Prod. Res. 15 (2013) 492-501.

    21. [21]

      [21] Y. Tian, Q. Guo, W. Xu, et al., A minor diterpenoid with a new 6/5/7/3 fused-ring skeleton from Euphorbia micractina, Org. Lett. 16 (2014) 3950-3953.

    22. [22]

      [22] W.D. Xu, Y. Tian, Q.L. Guo, et al., Secoeuphoractin, a minor diterpenoid with a new skeleton from Euphorbia micractina, Chin. Chem. Lett. 25 (2014) 1531-1534.

    23. [23]

      [23] W.X. Song, Y.C. Yang, J.G. Shi, Two new β-hydroxy amino acid-coupled secoiridoids from the flower buds of Lonicera japonica: isolation, structure elucidation, semisynthesis, and biological activities, Chin. Chem. Lett. 25 (2014) 1215-1219.

    24. [24]

      [24] Z.B. Jiang, W.X. Song, J.G. Shi, Two new 1-(60-O-acyl-β-D-glucopyranosyl)pyridinium-3-carboxylates from the flower buds of Lonicera japonica, Chin. Chem. Lett. 26 (2015) 69-72.

    25. [25]

      [25] Y. Yu, Z. Jiang, W. Song, et al., Glucosylated caffeoylquinic acid derivatives from the flower buds of Lonicera japonica, Acta Pharm. Sin. B 6 (2015) 210-214.

    26. [26]

      [26] M. Chen, L. Gan, S. Lin, et al., Alkaloids from the root of Isatis indigotica, J. Nat. Prod. 75 (2012) 1167-1176.

    27. [27]

      [27] M. Chen, S. Lin, L. Li, et al., Enantiomers of an indole alkaloid containing unusual dihydrothiopyran and 1,2,4-thiadiazole rings from the root of Isatis indigotica, Org. Lett. 22 (2012) 5668-5671.

    28. [28]

      [28] X. Wang, M. Chen, F. Wang, et al., Chemical constituents from root of Isatis indigotica, Chin. J. Chin. Mater. Med. 38 (2013) 1172-1182.

    29. [29]

      [29] G.M. Sheldrick, SHELXS-97, Program for Crystal Structure Solution, Universitä t Gö ttingen, 1997.

    30. [30]

      [30] Spartan 10; Wavefunction, Inc.: Irvine, CA.

    31. [31]

      [31] Gaussian 09, Revision A.1, Gaussian, Inc., Wallingford, CT, 2009.

    32. [32]

      [32] J. Sandstrom, Conformational analysis of planar chromophores with an attached chiral rotor by CD spectrometry, in: K. Nakanishi, N. Berova, R.W. Woody (Eds.), Circular DichroismPrinciples and Applications,Wiley-VCH,NewYork, 1994, p. 462.

    33. [33]

      [33] X.C. Li, D. Ferreira, Y.Q. Ding, Determination of absolute configuration of natural products: theoretical calculation of electronic circular dichroism as a tool, Curr. Org. Chem. 14 (2010) 1678-1697.

    34. [34]

      [34] S. Zhang, Studies on the chemical constituents of Isatis indigotica root, Chin. Tradit. Herb. Drugs 14 (1983) 247-248.

    35. [35]

      [35] P.L. Wu, Y.L. Hsu, C.W. Jao, Indole alkaloids from Cephalanceropsis gracilis, J. Nat. Prod. 69 (2006) 1467-1470.

    36. [36]

      [36] G. Bifulco, I. Bruno, R. Riccio, et al., Further brominated bis-and tri-indole alkaloids from the deep-water new Caledonian marine sponge Orina sp., J. Nat. Prod. 58 (1995) 1254-1260.

    37. [37]

      [37] Y.Wang, X. Tang, Z. Shao, et al., Indole-based alkaloids fromdeep-sea bacterium Shewanella piezotolerans with antitumor activities, J. Antibiot. 67 (2014) 395-399.

    38. [38]

      [38] T. Hu, G. Dryhurst, Electrochemical and peroxidase O2-mediated oxidation of indole-3-acetic acid at physiological pH, J. Electroanal. Chem. 432 (1997) 7-18.

    39. [39]

      [39] W.Y. He, R.M. Gao, X.Q. Li, et al., In vitro anti-influenza virus activity of 10 traditional Chinese medicines, Acta Pharm. Sin. 45 (2010) 395-398.

    40. [40]

      [40] W. Cheng, C. Zhu, W. Xu, et al., Chemical constituents of the bark of Machilus wangchiana and their biological activities, J. Nat. Prod. 72 (2009) 2145-2152.

    41. [41]

      [41] X. Fan, J. Zi, C. Zhu, et al., Chemical constituents of Heteroplexis micocephala, J. Nat. Prod. 72 (2009) 1184-1190.

    42. [42]

      [42] W. Song, S. Li, S. Wang, et al., Pyridinium alkaloid-coupled secoiridoids from the flower buds of Lonicera japonica, J. Nat. Prod. 71 (2008) 922-925.

    43. [43]

      [43] S. Mo, S. Wang, G. Zhou, et al., Phelligridins C-F: cytotoxic pyrano[4,3-c][2]benzopyran-1,6-dione and furo[3,2-c]pyran-4-one derivatives from the fungus Phellinus igniarius, J. Nat. Prod. 67 (2004) 823-828.

    44. [44]

      [44] Y. Wang, X. Shang, S. Wang, et al., Structures, biogenesis, and biological activities of pyrano[4,3-c]isochromen-4-one derivatives from the fungus Phellinus igniarius, J. Nat. Prod. 70 (2007) 296-299.

  • 加载中
    1. [1]

      Zhaohong ChenMengzhen LiJinfei LanShengqian HuXiaogang Chen . Organic ferroelastic enantiomers with high Tc and large dielectric switching ratio triggered by order-disorder and displacive phase transition. Chinese Chemical Letters, 2024, 35(10): 109548-. doi: 10.1016/j.cclet.2024.109548

    2. [2]

      Jinyan ZhangFen LiuQian JinXueyi LiQiong ZhanMu ChenSisi WangZhenlong WuWencai YeLei Wang . Discovery of unusual phloroglucinol–triterpenoid adducts from Leptospermum scoparium and Xanthostemon chrysanthus by building blocks-based molecular networking. Chinese Chemical Letters, 2024, 35(6): 108881-. doi: 10.1016/j.cclet.2023.108881

    3. [3]

      Keying Qu Jie Li Ziqiu Lai Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091

    4. [4]

      Jingping HuJing Xu . Total synthesis of a putative yuzurimine-type Daphniphyllum alkaloid C14epi-deoxycalyciphylline H. Chinese Chemical Letters, 2024, 35(4): 108733-. doi: 10.1016/j.cclet.2023.108733

    5. [5]

      Guangyao WangZhitong XuYe QiYueguang FangGuiling NingJunwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503

    6. [6]

      Ting WangXin YuYaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320

    7. [7]

      Fangping YangJin ShiYuansong WeiQing GaoJingrui ShenLichen YinHaoyu Tang . Mixed-charge glycopolypeptides as antibacterial coatings with long-term activity. Chinese Chemical Letters, 2025, 36(2): 109746-. doi: 10.1016/j.cclet.2024.109746

    8. [8]

      Chong LiuLing LiJiahui GaoYanwei LiNazhen ZhangJing ZangCong LiuZhaopei GuoYanhui LiHuayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118

    9. [9]

      Di ZHANGTianxiang XIEXu HEWanyu WEIQi FANJie QIAOGang JINNingbo LI . Construction and antitumor activity of pH/GSH dual-responsive magnetic nanodrug. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 786-796. doi: 10.11862/CJIC.20240329

    10. [10]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    11. [11]

      Xinyi Hu Riguang Zhang Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157

    12. [12]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    13. [13]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

    14. [14]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

    15. [15]

      Jia ChenYun LiuZerong LongYan LiHongdeng Qiu . Colorimetric detection of α-glucosidase activity using Ni-CeO2 nanorods and its application to potential natural inhibitor screening. Chinese Chemical Letters, 2024, 35(9): 109463-. doi: 10.1016/j.cclet.2023.109463

    16. [16]

      Guoping YangZhoufu LinXize ZhangJiawei CaoXuejiao ChenYufeng LiuXiaoling LinKe Li . Assembly of Y(Ⅲ)-containing antimonotungstates induced by malic acid with catalytic activity for the synthesis of imidazoles. Chinese Chemical Letters, 2024, 35(12): 110274-. doi: 10.1016/j.cclet.2024.110274

    17. [17]

      Meng WangYan ZhangYunbo YuWenpo ShanHong He . High-temperature calcination dramatically promotes the activity of Cs/Co/Ce-Sn catalyst for soot oxidation. Chinese Chemical Letters, 2025, 36(1): 109928-. doi: 10.1016/j.cclet.2024.109928

    18. [18]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    19. [19]

      Yun-Feng LiuHui-Fang DuYa-Hui ZhangZhi-Qin LiuXiao-Qian QiDu-Qiang LuoFei Cao . Chaeglobol A, an unusual octocyclic sterol with antifungal activity from the marine-derived fungus Chaetomium globosum HBU-45. Chinese Chemical Letters, 2025, 36(3): 109858-. doi: 10.1016/j.cclet.2024.109858

    20. [20]

      Xiaoli DengXiangchao LuYang CaoQianjin Chen . Electrochemical imaging uncovers the heterogeneity of HER activity by sulfur vacancies in molybdenum disulfide monolayer. Chinese Chemical Letters, 2025, 36(3): 110379-. doi: 10.1016/j.cclet.2024.110379

Metrics
  • PDF Downloads(0)
  • Abstract views(736)
  • HTML views(26)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return