Citation: Shuang-Lei Yang, Bang-Hong Zhou, Mei Lei, Lan-Ping Huang, Jun Pan, Wei Wu, Hong-Bo Zhang. Sub-100 nm hollow SnO2@C nanoparticles as anode material for lithium ion batteries and significantly enhanced cycle performances[J]. Chinese Chemical Letters, ;2015, 26(10): 1293-1297. doi: 10.1016/j.cclet.2015.05.051 shu

Sub-100 nm hollow SnO2@C nanoparticles as anode material for lithium ion batteries and significantly enhanced cycle performances

  • Corresponding author: Wei Wu,  Hong-Bo Zhang, 
  • Received Date: 25 March 2015
    Available Online: 19 May 2015

    Fund Project: We greatly acknowledge partial financial support by the Program for the NSFC (Nos. 51302325, 51201115, 51471121) (Nos. 51302325, 51201115, 51471121) New Century Excellent Talents in University (No. NCET-12-0553) (No. NCET-12-0553) Program for Shenghua Overseas Talent (No. 1681-7607030005) from Central South University, Hubei Provincial Natural Science Foundation (No. 2014CFB261) (No. 1681-7607030005)Wuhan University. (No. CSUZC2014032)

  • Rational designing and controlling of nanostructures is a key factor in realizing appropriate properties required for the high-performance energy fields. In the present study, hollow SnO2@C nanoparticles (NPs) with a mean size of 50 nm have been synthesized in large-scale via a facile hydrothermal approach. The morphology and composition of as-obtained products were studied by various characterized techniques. As an anode material for lithium ion batteries (LIBs), the as-prepared hollow SnO2@C NPs exhibit significant improvement in cycle performances. The discharge capacity of lithium battery is as high as 370 mAh g-1, and the current density is 3910 mA g-1(5 C) after 573 cycles. Furthermore, the capacity recovers up to 1100 mAh g-1 at the rate performances in which the current density is recovered to 156.4 mA g-1(0.2 C). Undoubtedly, sub-100 nm SnO2@C NPs provide significant improvement to the electrochemical performance of LIBs as superior-anode nanomaterials, and this carbon coating strategy can pave the way for developing high-performance LIBs.
  • 加载中
    1. [1]

      [1] J.R. Dahn, T. Zheng, Y.H. Liu, J.S. Xue, Mechanisms for lithium insertion in carbonaceous materials, Science 270(1995) 590-593.

    2. [2]

      [2] J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature 414(2001) 359-367.

    3. [3]

      [3] X.W. Lou, J.S. Chen, P. Chen, L.A. Archer, One-pot synthesis of carbon-coated SnO2 nanocolloids with improved reversible lithium storage properties, Chem. Mater. 21(2009) 2868-2874.

    4. [4]

      [4] M.G. Kim, J. Cho, Reversible and high-capacity nanostructured electrode materials for Li-ion batteries, Adv. Funct. Mater. 19(2009) 1497-1514.

    5. [5]

      [5] J.X. Li, Y. Zhao, N. Wang, L.H. Guan, A high performance carrier for SnO2 nanoparticles used in lithium ion battery, Chem. Commun. 47(2011) 5238-5240.

    6. [6]

      [6] J.M. Ma, J. Zhang, S.R. Wang, et al., Superior gas-sensing and lithium-storage performance SnO2 nanocrystals synthesized by hydrothermal method, CrystEng-Comm 13(2011) 6077-6081.

    7. [7]

      [7] G.F. Xia, N. Li, D.Y. Li, et al., Molten-salt decomposition synthesis of SnO2 nanoparticles as anode materials for lithium ion batteries, Mater. Lett. 65(2011) 3377-3379.

    8. [8]

      [8] J.J. Cai, Z.S. Li, S. Yao, et al., Close-packed SnO2 nanocrystals anchored on amorphous silica as a stable anode material for lithium-ion battery, Electrochim. Acta 74(2012) 182-188.

    9. [9]

      [9] K. Ui, S. Kawamura, N. Kumagai, Fabrication of binder-free SnO2 nanoparticle electrode for lithium secondary batteries by electrophoretic deposition method, Electrochim. Acta 76(2012) 383-388.

    10. [10]

      [10] W.S. Kim, Y. Hwa, J.H. Jeun, H.J. Sohn, S.H. Hong, Synthesis of SnO2 nano hollow spheres and their size effects in lithium ion battery anode application, J. Power Sources 225(2013) 108-112.

    11. [11]

      [11] W. Wei, L.X. Song, L. Guo, SnO2 hollow nanospheres assembled by single layer nanocrystals as anode material for high performance Li ion batteries, Chin. Chem. Lett. 26(2015) 124-128.

    12. [12]

      [12] H. Kim, J. Cho, Hard templating synthesis of mesoporous and nanowire SnO2 lithium battery anode materials, J. Mater. Chem. 18(2008) 771-775.

    13. [13]

      [13] K. Shiva, S. Asokan, A.J. Bhattacharyya, Improved lithium cyclability and storage in a multi-sized pore ("differential spacers") mesoporous SnO2, Nanoscale 3(2011) 1501-1503.

    14. [14]

      [14] S.J. Ding, X.W.D. Lou, SnO2 nanosheet hollow spheres with improved lithium storage capabilities, Nanoscale 3(2011) 3586-3588.

    15. [15]

      [15] Z.Y. Wang, D.Y. Luan, F.Y.C. Boey, X.W. Lou, Fast formation of SnO2 nanoboxes with enhanced lithium storage capability, J. Am. Chem. Soc. 133(2011) 4738-4741.

    16. [16]

      [16] H.B. Wu, J.S. Chen, X.W. Lou, H.H. Hng, Synthesis of SnO2 hierarchical structures assembled from nanosheets and their lithium storage properties, J. Phys. Chem. C 115(2011) 24605-24610.

    17. [17]

      [17] C. Wang, Y. Zhou, M. Ge, et al., Large-scale synthesis of SnO2 nanosheets with high lithium storage capacity, J. Am. Chem. Soc. 132(2009) 46-47.

    18. [18]

      [18] P. Wu, M.Y. Du, H. Zhang, C.X. Zhai, D.R. Yang, Self-templating synthesis of SnO2-carbon hybrid hollow spheres for superior reversible lithium ion storage, ACS Appl. Mater. Interfaces 3(2011) 1946-1952.

    19. [19]

      [19] X.W. Lou, Y. Wang, C. Yuan, J.Y. Lee, L.A. Archer, Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity, Adv. Mater. 18(2006) 2325-2329.

    20. [20]

      [20] X.W. Lou, D. Deng, J.Y. Lee, L.A. Archer, Preparation of SnO2/carbon composite hollow spheres and their lithium storage properties, Chem. Mater. 20(2008) 6562-6566.

    21. [21]

      [21] W.M. Zhang, X.L. Wu, J.S. Hu, Y.G. Guo, L.J. Wan, Carbon coated Fe3O4 nanospindles as a superior anode material for lithium-ion batteries, Adv. Funct. Mater. 18(2008) 3941-3946.

    22. [22]

      [22] H. Li, H. Zhou, Enhancing the performances of Li-ion batteries by carbon-coating:present and future, Chem. Commun. 48(2012) 1201-1217.

    23. [23]

      [23] J. Liu, W. Li, A. Manthiram, Dense core-shell structured SnO2/C composites as high performance anodes for lithium ion batteries, Chem. Commun. 46(2010) 1437-1439.

    24. [24]

      [24] Y. Chen, Q.Z. Huang, J. Wang, Q. Wang, J.M. Xue, Synthesis of monodispersed SnO2@C composite hollow spheres for lithium ion battery anode applications, J. Mater. Chem. 21(2011) 17448-17453.

    25. [25]

      [25] S.M. Paek, E. Yoo, I. Honma, Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure, Nano Lett. 9(2008) 72-75.

    26. [26]

      [26] L. Wang, D. Wang, H.Z. Dong, F.X. Zhang, J. Jin, Interface chemistry engineering for stable cycling of reduced GO/SnO2 nanocomposites for lithium ion battery, Nano Lett. 13(2013) 1711-1716.

    27. [27]

      [27] H. Park, T. Song, H. Han, et al., SnO2 encapsulated TiO2 hollow nanofibers as anode material for lithium ion batteries, Electrochem. Commun. 22(2012) 81-84.

    28. [28]

      [28] N. Feng, L. Qiao, D.K. Hu, X.L. Sun, P. Wang, D.Y. He, Synthesis, characterization, and lithium-storage of ZnO-SnO2 hierarchical architectures, RSC Adv. 3(2013) 7758-7764.

    29. [29]

      [29] W. Wu, S.F. Zhang, J. Zhou, et al., Controlled synthesis of monodisperse sub-100 nm hollow SnO2 nanospheres:a template- and surfactant-free solutionphase route, the growth mechanism, optical properties, and application as a photocatalyst, Chem. Eur. J. 17(2011) 9708-9719.

    30. [30]

      [30] S.Y. Liu, Y.H. Ma, S.P. Armes, C. Perruchot, J.F. Watts, Direct verification of the core-shell structure of shell cross-linked micelles in the solid state using X-ray photoelectron spectroscopy, Langmuir 18(2002) 7780-7784.

    31. [31]

      [31] Q.Y. Tian, W. Wu, L.L. Sun, et al., Tube-like ternary α-Fe2O3@SnO2@Cu2O sandwich heterostructures:synthesis and enhanced photocatalytic properties, ACS Appl. Mater. Interfaces 6(2014) 13088-13097.

    32. [32]

      [32] W. Wu, Q.G. He, H. Chen, J.X. Tang, L.B. Nie, Sonochemical synthesis, structure and magnetic properties of air-stable Fe3O4/Au nanoparticles, Nanotechnology 18(2007) 145609.

    33. [33]

      [33] J.J. Chen, K. Yano, Highly monodispersed tin oxide/mesoporous starbust carbon composite as high-performance Li-ion battery anode, ACS Appl. Mater. Interfaces 5(2013) 7682-7687.

    34. [34]

      [34] X.F. Li, X.B. Meng, J. Liu, et al., Tin oxide with controlled morphology and crystallinity by atomic layer deposition onto graphene nanosheets for enhanced lithium storage, Adv. Funct. Mater. 22(2012) 1647-1654.

    35. [35]

      [35] J.P. Liu, Y.Y. Li, X.T. Huang, et al., Direct growth of SnO2 nanorod array electrodes for lithium-ion batteries, J. Mater. Chem. 19(2009) 1859-1864.

    36. [36]

      [36] X.W. Guo, X.P. Fang, Y. Sun, et al., Lithium storage in carbon-coated SnO2 by conversion reaction, J. Power Sources 226(2013) 75-81.

    37. [37]

      [37] M. He, L.X. Yuan, X.L. Hu, et al., A SnO2@carbon nanocluster anode material with superior cyclability and rate capability for lithium-ion batteries, Nanoscale 5(2013) 3298-3305.

    38. [38]

      [38] M. Zhang, Y.W. Li, E. Uchaker, et al., Homogenous incorporation of SnO2 nanoparticles in carbon cryogels via the thermal decomposition of stannous sulfate and their enhanced lithium-ion intercalation properties, Nano Energy 2(2013) 769-778.

  • 加载中
    1. [1]

      Xin LiLing ZhangYunyan FanShaojing LinYong LinYongsheng YingMeijiao HuHaiying GaoXianri XuZhongbiao XiaXinchuan LinJunjie LuXiang Han . Carbon interconnected microsized Si film toward high energy room temperature solid-state lithium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109776-. doi: 10.1016/j.cclet.2024.109776

    2. [2]

      Zhong-Hui SunYu-Qi ZhangZhen-Yi GuDong-Yang QuHong-Yu GuanXing-Long Wu . CoPSe nanoparticles confined in nitrogen-doped dual carbon network towards high-performance lithium/potassium ion batteries. Chinese Chemical Letters, 2025, 36(1): 109590-. doi: 10.1016/j.cclet.2024.109590

    3. [3]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    4. [4]

      Zeyu XUTongzhou LUHaibo SHAOJianming WANG . Preparation and electrochemical lithium storage performance of porous silicon microsphere composite with metal modification and carbon coating. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1995-2008. doi: 10.11862/CJIC.20240164

    5. [5]

      Mianying Huang Zhiguang Xu Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2024.100309

    6. [6]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    7. [7]

      Xingang KongYabei SuCuijuan XingWeijie ChengJianfeng HuangLifeng ZhangHaibo OuyangQi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428

    8. [8]

      Bing JiangGang ZouBi LuoYan GuoJingru LiWendi ZhangQianxiao FanLehao LiuLihua ChuQiaobao ZhangMeicheng Li . Enhanced electrochemical performance of lithium-rich layered oxide materials: Exploring advanced coating strategies. Chinese Chemical Letters, 2025, 36(4): 109801-. doi: 10.1016/j.cclet.2024.109801

    9. [9]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    10. [10]

      Xingxing JiangYuxin ZhaoYan KongJianju SunShangzhao FengXin LuQi HuHengpan YangChuanxin He . Support effect and confinement effect of porous carbon loaded tin dioxide nanoparticles in high-performance CO2 electroreduction towards formate. Chinese Chemical Letters, 2025, 36(1): 109555-. doi: 10.1016/j.cclet.2024.109555

    11. [11]

      Haixia WuKailu Guo . Iodized polyacrylonitrile as fast-charging anode for lithium-ion battery. Chinese Chemical Letters, 2024, 35(10): 109550-. doi: 10.1016/j.cclet.2024.109550

    12. [12]

      Ting HuYuxuan GuoYixuan MengZe ZhangJi YuJianxin CaiZhenyu Yang . Uniform lithium deposition induced by copper phthalocyanine additive for durable lithium anode in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108603-. doi: 10.1016/j.cclet.2023.108603

    13. [13]

      Yuqing LiuYu YangYuhan EChanglong PangDi CuiAng Li . Insight into microbial synthesis of metal nanomaterials and their environmental applications: Exploration for enhanced controllable synthesis. Chinese Chemical Letters, 2024, 35(11): 109651-. doi: 10.1016/j.cclet.2024.109651

    14. [14]

      Yue QianZhoujia LiuHaixin SongRuize YinHanni YangSiyang LiWeiwei XiongSaisai YuanJunhao ZhangHuan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785

    15. [15]

      Yihong LiZhong QiuLei HuangShenghui ShenPing LiuHaomiao ZhangFeng CaoXinping HeJun ZhangYang XiaXinqi LiangChen WangWangjun WanYongqi ZhangMinghua ChenWenkui ZhangHui HuangYongping GanXinhui Xia . Plasma enhanced reduction method for synthesis of reduced graphene oxide fiber/Si anode with improved performance. Chinese Chemical Letters, 2024, 35(11): 109510-. doi: 10.1016/j.cclet.2024.109510

    16. [16]

      Yang LiXiaoxu LiuTianyi JiMan ZhangXueru YanMengjie YaoDawei ShengShaodong LiPeipei RenZexiang Shen . Potassium ion doped manganese oxide nanoscrolls enhanced the performance of aqueous zinc-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109551-. doi: 10.1016/j.cclet.2024.109551

    17. [17]

      Jiaojiao LiangYouming PengZhichao XuYufei WangMenglong LiuXin LiuDi HuangYuehua WeiZengxi Wei . Boron/phosphorus co-doped nitrogen-rich carbon nanofiber with flexible anode for robust sodium-ion battery. Chinese Chemical Letters, 2025, 36(1): 110452-. doi: 10.1016/j.cclet.2024.110452

    18. [18]

      Jiayu BaiSongjie HuLirong FengXinhui JinDong WangKai ZhangXiaohui Guo . Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109326-. doi: 10.1016/j.cclet.2023.109326

    19. [19]

      Shuo ZhangHaitao LiaoZhi-Qun LiuChong YanJia-Qi Huang . Re-evaluating the nano-sized inorganic protective layer on Cu current collector for anode free lithium metal batteries. Chinese Chemical Letters, 2024, 35(7): 109284-. doi: 10.1016/j.cclet.2023.109284

    20. [20]

      Xuejie GaoXinyang ChenMing JiangHanyan WuWenfeng RenXiaofei YangRuncang Sun . Long-lifespan thin Li anode achieved by dead Li rejuvenation and Li dendrite suppression for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109448-. doi: 10.1016/j.cclet.2023.109448

Metrics
  • PDF Downloads(0)
  • Abstract views(740)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return