Citation:
Ying Wu, Yu-Dong Yang, Min Shao, Si-Hua Lu. Missing in total OH reactivity of VOCs from gasoline evaporation[J]. Chinese Chemical Letters,
;2015, 26(10): 1246-1248.
doi:
10.1016/j.cclet.2015.05.047
-
Gasoline evaporation is an important anthropogenic source of atmospheric volatile organic compounds (VOCs). Total OH reactivity for gasoline vapor was measured from 4 kinds of gasoline for the first time by comparative reactivity method (CRM) using proton transfer reaction mass spectrometer (PTR-MS). Compositions of 56 PAMS (photochemical assessment monitoring station) nonmethane hydrocarbons (NMHCs) were measured for both liquid and headspace of gasoline. We found high abundance of alkenes and aromatics in gasoline. The calculated OH reactivity derived from quantified NMHCs speciation accounted for only 57±4% of total reactivity obtained from CRM method. N-Alkenes, only 6 wt% in liquid gasoline, contributed to 70% of calculated reactivity. We assume that the undetected branched alkenes are the possible reason for the missing reactivity. Wesuggest that the priority of gasoline quality improvement is to reduce alkenes content in gasoline in term of reactivity-based control.
-
-
-
[1]
[1] J. Williams, Organic trace gases in the atmosphere:an overview, Environ. Chem. 1(2004) 125.
-
[2]
[2] Z.B. Yuan, A.K.H. Lau, M. Shao, et al., Source analysis of volatile organic compounds by positive matrix factorization in urban and rural environments in Beijing, J. Geophys. Res. Atmos. 114(2009) D00G15.
-
[3]
[3] Y. Liu, M. Shao, S.H. Lu, et al., Source apportionment of ambient volatile organic compounds in the Pearl River Delta, China:part II, Atmos. Environ. 42(2008) 6261-6274.
-
[4]
[4] X. Yue, Y. Wu, J.M. Hao, et al., Fuel quality management versus vehicle emission control in China, status quo and future perspectives, Energy Policy 79(2015) 87-98.
-
[5]
[5] X.R. Ren, H. Harder, M. Martinez, et al., HOx concentrations and OH reactivity observations in New York City during PMTACS-NY2001, Atmos. Environ. 37(2003) 3627-3637.
-
[6]
[6] A. Yoshino, Y. Sadanaga, K. Watanabe, et al., Measurement of total OH reactivity by laser-induced pump and probe technique-comprehensive observations in the urban atmosphere of Tokyo, Atmos. Environ. 40(2006) 7869-7881.
-
[7]
[7] C. Dolgorouky, V. Gros, R. Sarda-Esteve, et al., Total OH reactivity measurements in Paris during the 2010 MEGAPOLI winter campaign, Atmos. Chem. Phys. 12(2012) 9593-9612.
-
[8]
[8] Y. Nakashima, N. Kamei, S. Kobayashi, Y. Kajiia, Total OH reactivity and VOC analyses for gasoline vehicular exhaust with a chassis dynamometer, Atmos. Environ. 44(2010) 468-475.
-
[9]
[9] X.L. Liu, L.M. Zeng, S.H. Lu, et al., Online monitoring system for volatile organic compounds in the atmosphere, Acta Sci. Circumstan. 29(2009) 2471-2477.
-
[10]
[10] M. Wang, L.M. Zeng, S.H. Lu, et al., Development and validation of a cryogen-free automatic gas chromatograph system (GC-MS/FID) for online measurements of volatile organic compounds, Anal. Methods 6(2014) 9424-9434.
-
[11]
[11] V. Sinha, J. Williams, J.N. Crowley, J. Lelieveld, The comparative reactivity method-a new tool to measure total OH reactivity in ambient air, Atmos. Chem. Phys. 8(2008) 2213-2227.
-
[12]
[12] R.A. Harley, S.C. Coulter-Burke, T.S. Yeung, Relating liquid fuel and headspace vapor composition for California reformulated gasoline samples containing ethanol, Environ. Sci. Technol. 34(2000) 4088-4094.
-
[13]
[13] R. Atkinson, D.L. Baulch, R.A. Cox, et al., Evaluated kinetic and photochemical data for atmospheric chemistry:volume II-gas phase reactions of organic species, Atmos. Chem. Phys. 6(2006) 3625-4055.
-
[14]
[14] Y. Liu, M. Shao, L.L. Fu, et al., Source profiles of volatile organic compounds (VOCs) measured in China:Part I, Atmos. Environ. 42(2008) 6247-6260.
-
[15]
[15] Y.L. Zhang, X.M. Wang, Z. Zhang, et al., Species profiles and normalized reactivity of volatile organic compounds from gasoline evaporation in China, Atmos. Environ. 79(2013) 110-118.
-
[16]
[16] S.H. Lu, Y.H. Bai, G.S. Zhang, J. Ma, Study on the characteristics of VOCs source profiles of vehicle exhaust and gasoline emission, Univ. Peking 39(2003) 507-511.
-
[1]
-
-
-
[1]
Yuling Ma , Dongqing Liu , Tao Zhang , Chengjie Song , Dongmei Liu , Peizhi Wang , Wei Wang . Bimetallic composite carbon fiber with persulfate mediation for intercepting volatile organic compounds during solar interfacial evaporation. Chinese Chemical Letters, 2025, 36(3): 110000-. doi: 10.1016/j.cclet.2024.110000
-
[2]
Zeyu Jiang , Yadi Wang , Changwei Chen , Chi He . Progress and challenge of functional single-atom catalysts for the catalytic oxidation of volatile organic compounds. Chinese Chemical Letters, 2024, 35(9): 109400-. doi: 10.1016/j.cclet.2023.109400
-
[3]
Xu-Hui Yue , Xiang-Wen Zhang , Hui-Min He , Lei Qiao , Zhong-Ming Sun . Synthesis, chemical bonding and reactivity of new medium-sized polyarsenides. Chinese Chemical Letters, 2024, 35(7): 108907-. doi: 10.1016/j.cclet.2023.108907
-
[4]
Yuanjin Chen , Xianghui Shi , Dajiang Huang , Junnian Wei , Zhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292
-
[5]
Xinghong Cai , Qiang Yang , Yao Tong , Lanyin Liu , Wutang Zhang , Sam Zhang , Min Wang . AlO2: A novel two-dimensional material with a high negative Poisson's ratio for the adsorption of volatile organic compounds. Chinese Chemical Letters, 2025, 36(2): 109586-. doi: 10.1016/j.cclet.2024.109586
-
[6]
Teng Wang , Jiachun Cao , Juan Li , Didi Li , Zhimin Ao . A novel photocatalytic mechanism of volatile organic compounds degradation on BaTiO3 under visible light: Photo-electrons transfer from photocatalyst to pollutant. Chinese Chemical Letters, 2025, 36(3): 110078-. doi: 10.1016/j.cclet.2024.110078
-
[7]
Shiqi Xu , Zi Ye , Shuang Shang , Fengge Wang , Huan Zhang , Lianguo Chen , Hao Lin , Chen Chen , Fang Hua , Chong-Jing Zhang . Pairs of thiol-substituted 1,2,4-triazole-based isomeric covalent inhibitors with tunable reactivity and selectivity. Chinese Chemical Letters, 2024, 35(7): 109034-. doi: 10.1016/j.cclet.2023.109034
-
[8]
Caixia Zhu , Qing Hong , Kaiyuan Wang , Yanfei Shen , Songqin Liu , Yuanjian Zhang . Single nanozyme-based colorimetric biosensor for dopamine with enhanced selectivity via reactivity of oxidation intermediates. Chinese Chemical Letters, 2024, 35(10): 109560-. doi: 10.1016/j.cclet.2024.109560
-
[9]
Jumei Zhang , Ziheng Zhang , Gang Li , Hongjin Qiao , Hua Xie , Ling Jiang . Ligand-mediated reactivity in CO oxidation of yttrium-nickel monoxide carbonyl complexes. Chinese Chemical Letters, 2025, 36(2): 110278-. doi: 10.1016/j.cclet.2024.110278
-
[10]
Yiming Fang , Huimin Gao , Kaiting Cheng , Liang Bai , Zhengtong Li , Yadong Zhao , Xingtao Xu . An overview of photothermal materials for solar-driven interfacial evaporation. Chinese Chemical Letters, 2025, 36(3): 109925-. doi: 10.1016/j.cclet.2024.109925
-
[11]
Deqi Fan , Yicheng Tang , Yemei Liao , Yan Mi , Yi Lu , Xiaofei Yang . Two birds with one stone: Functionalized wood composites for efficient photocatalytic hydrogen production and solar water evaporation. Chinese Chemical Letters, 2024, 35(9): 109441-. doi: 10.1016/j.cclet.2023.109441
-
[12]
Honglin Gao , Chunlin Yuan , Hongyu Chen , Aiyi Dong , Pan Gao , Guangjin Hou . Surface gallium hydride on Ga2O3 polymorphs: A comparative solid-state NMR study. Chinese Journal of Structural Chemistry, 2025, 44(4): 100561-100561. doi: 10.1016/j.cjsc.2025.100561
-
[13]
Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108
-
[14]
Zhiwei Zhong , Yanbin Huang , Wantai Yang . A simple photochemical method for surface fluorination using perfluoroketones. Chinese Chemical Letters, 2024, 35(5): 109339-. doi: 10.1016/j.cclet.2023.109339
-
[15]
Lu Dai , Yuxin Ren , Shuang Li , Meidi Wang , Chentao Hu , Ya-Pan Wu , Guangtong Hai , Dong-Sheng Li . Room-temperature synthesis of Co(OH)2/Mo2TiC2Tx hetero-nanosheets with interfacial coupling for enhanced oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(4): 109774-. doi: 10.1016/j.cclet.2024.109774
-
[16]
Mei Peng , Wei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899
-
[17]
Wei Sun , Anjing Liao , Li Lei , Xu Tang , Ya Wang , Jian Wu . Research progress on piperidine-containing compounds as agrochemicals. Chinese Chemical Letters, 2025, 36(1): 109855-. doi: 10.1016/j.cclet.2024.109855
-
[18]
Xinlong Han , Huiying Zeng , Chao-Jun Li . Trifluoromethylative homo-coupling of carbonyl compounds. Chinese Chemical Letters, 2025, 36(1): 109817-. doi: 10.1016/j.cclet.2024.109817
-
[19]
Beitong Zhu , Xiaorui Yang , Lirong Jiang , Tianhong Chen , Shuangfei Wang , Lintao Zeng . A portable and versatile fluorescent platform for high-throughput screening of toxic phosgene, diethyl chlorophosphate and volatile acyl chlorides. Chinese Chemical Letters, 2025, 36(1): 110222-. doi: 10.1016/j.cclet.2024.110222
-
[20]
Erzhuo Cheng , Yunyi Li , Wei Yuan , Wei Gong , Yanjun Cai , Yuan Gu , Yong Jiang , Yu Chen , Jingxi Zhang , Guangquan Mo , Bin Yang . Galvanostatic method assembled ZIFs nanostructure as novel nanozyme for the glucose oxidation and biosensing. Chinese Chemical Letters, 2024, 35(9): 109386-. doi: 10.1016/j.cclet.2023.109386
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(699)
- HTML views(1)