Citation: Ying Wu, Yu-Dong Yang, Min Shao, Si-Hua Lu. Missing in total OH reactivity of VOCs from gasoline evaporation[J]. Chinese Chemical Letters, ;2015, 26(10): 1246-1248. doi: 10.1016/j.cclet.2015.05.047 shu

Missing in total OH reactivity of VOCs from gasoline evaporation

  • Corresponding author: Min Shao, 
  • Received Date: 7 April 2015
    Available Online: 19 May 2015

    Fund Project: This work was funded by the National Natural Science Foundation (Nos. 41125018, 41330635). (Nos. 41125018, 41330635)

  • Gasoline evaporation is an important anthropogenic source of atmospheric volatile organic compounds (VOCs). Total OH reactivity for gasoline vapor was measured from 4 kinds of gasoline for the first time by comparative reactivity method (CRM) using proton transfer reaction mass spectrometer (PTR-MS). Compositions of 56 PAMS (photochemical assessment monitoring station) nonmethane hydrocarbons (NMHCs) were measured for both liquid and headspace of gasoline. We found high abundance of alkenes and aromatics in gasoline. The calculated OH reactivity derived from quantified NMHCs speciation accounted for only 57±4% of total reactivity obtained from CRM method. N-Alkenes, only 6 wt% in liquid gasoline, contributed to 70% of calculated reactivity. We assume that the undetected branched alkenes are the possible reason for the missing reactivity. Wesuggest that the priority of gasoline quality improvement is to reduce alkenes content in gasoline in term of reactivity-based control.
  • 加载中
    1. [1]

      [1] J. Williams, Organic trace gases in the atmosphere:an overview, Environ. Chem. 1(2004) 125.

    2. [2]

      [2] Z.B. Yuan, A.K.H. Lau, M. Shao, et al., Source analysis of volatile organic compounds by positive matrix factorization in urban and rural environments in Beijing, J. Geophys. Res. Atmos. 114(2009) D00G15.

    3. [3]

      [3] Y. Liu, M. Shao, S.H. Lu, et al., Source apportionment of ambient volatile organic compounds in the Pearl River Delta, China:part II, Atmos. Environ. 42(2008) 6261-6274.

    4. [4]

      [4] X. Yue, Y. Wu, J.M. Hao, et al., Fuel quality management versus vehicle emission control in China, status quo and future perspectives, Energy Policy 79(2015) 87-98.

    5. [5]

      [5] X.R. Ren, H. Harder, M. Martinez, et al., HOx concentrations and OH reactivity observations in New York City during PMTACS-NY2001, Atmos. Environ. 37(2003) 3627-3637.

    6. [6]

      [6] A. Yoshino, Y. Sadanaga, K. Watanabe, et al., Measurement of total OH reactivity by laser-induced pump and probe technique-comprehensive observations in the urban atmosphere of Tokyo, Atmos. Environ. 40(2006) 7869-7881.

    7. [7]

      [7] C. Dolgorouky, V. Gros, R. Sarda-Esteve, et al., Total OH reactivity measurements in Paris during the 2010 MEGAPOLI winter campaign, Atmos. Chem. Phys. 12(2012) 9593-9612.

    8. [8]

      [8] Y. Nakashima, N. Kamei, S. Kobayashi, Y. Kajiia, Total OH reactivity and VOC analyses for gasoline vehicular exhaust with a chassis dynamometer, Atmos. Environ. 44(2010) 468-475.

    9. [9]

      [9] X.L. Liu, L.M. Zeng, S.H. Lu, et al., Online monitoring system for volatile organic compounds in the atmosphere, Acta Sci. Circumstan. 29(2009) 2471-2477.

    10. [10]

      [10] M. Wang, L.M. Zeng, S.H. Lu, et al., Development and validation of a cryogen-free automatic gas chromatograph system (GC-MS/FID) for online measurements of volatile organic compounds, Anal. Methods 6(2014) 9424-9434.

    11. [11]

      [11] V. Sinha, J. Williams, J.N. Crowley, J. Lelieveld, The comparative reactivity method-a new tool to measure total OH reactivity in ambient air, Atmos. Chem. Phys. 8(2008) 2213-2227.

    12. [12]

      [12] R.A. Harley, S.C. Coulter-Burke, T.S. Yeung, Relating liquid fuel and headspace vapor composition for California reformulated gasoline samples containing ethanol, Environ. Sci. Technol. 34(2000) 4088-4094.

    13. [13]

      [13] R. Atkinson, D.L. Baulch, R.A. Cox, et al., Evaluated kinetic and photochemical data for atmospheric chemistry:volume II-gas phase reactions of organic species, Atmos. Chem. Phys. 6(2006) 3625-4055.

    14. [14]

      [14] Y. Liu, M. Shao, L.L. Fu, et al., Source profiles of volatile organic compounds (VOCs) measured in China:Part I, Atmos. Environ. 42(2008) 6247-6260.

    15. [15]

      [15] Y.L. Zhang, X.M. Wang, Z. Zhang, et al., Species profiles and normalized reactivity of volatile organic compounds from gasoline evaporation in China, Atmos. Environ. 79(2013) 110-118.

    16. [16]

      [16] S.H. Lu, Y.H. Bai, G.S. Zhang, J. Ma, Study on the characteristics of VOCs source profiles of vehicle exhaust and gasoline emission, Univ. Peking 39(2003) 507-511.

  • 加载中
    1. [1]

      Yuling MaDongqing LiuTao ZhangChengjie SongDongmei LiuPeizhi WangWei Wang . Bimetallic composite carbon fiber with persulfate mediation for intercepting volatile organic compounds during solar interfacial evaporation. Chinese Chemical Letters, 2025, 36(3): 110000-. doi: 10.1016/j.cclet.2024.110000

    2. [2]

      Zeyu JiangYadi WangChangwei ChenChi He . Progress and challenge of functional single-atom catalysts for the catalytic oxidation of volatile organic compounds. Chinese Chemical Letters, 2024, 35(9): 109400-. doi: 10.1016/j.cclet.2023.109400

    3. [3]

      Xu-Hui YueXiang-Wen ZhangHui-Min HeLei QiaoZhong-Ming Sun . Synthesis, chemical bonding and reactivity of new medium-sized polyarsenides. Chinese Chemical Letters, 2024, 35(7): 108907-. doi: 10.1016/j.cclet.2023.108907

    4. [4]

      Yuanjin ChenXianghui ShiDajiang HuangJunnian WeiZhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292

    5. [5]

      Xinghong CaiQiang YangYao TongLanyin LiuWutang ZhangSam ZhangMin Wang . AlO2: A novel two-dimensional material with a high negative Poisson's ratio for the adsorption of volatile organic compounds. Chinese Chemical Letters, 2025, 36(2): 109586-. doi: 10.1016/j.cclet.2024.109586

    6. [6]

      Teng WangJiachun CaoJuan LiDidi LiZhimin Ao . A novel photocatalytic mechanism of volatile organic compounds degradation on BaTiO3 under visible light: Photo-electrons transfer from photocatalyst to pollutant. Chinese Chemical Letters, 2025, 36(3): 110078-. doi: 10.1016/j.cclet.2024.110078

    7. [7]

      Shiqi XuZi YeShuang ShangFengge WangHuan ZhangLianguo ChenHao LinChen ChenFang HuaChong-Jing Zhang . Pairs of thiol-substituted 1,2,4-triazole-based isomeric covalent inhibitors with tunable reactivity and selectivity. Chinese Chemical Letters, 2024, 35(7): 109034-. doi: 10.1016/j.cclet.2023.109034

    8. [8]

      Caixia ZhuQing HongKaiyuan WangYanfei ShenSongqin LiuYuanjian Zhang . Single nanozyme-based colorimetric biosensor for dopamine with enhanced selectivity via reactivity of oxidation intermediates. Chinese Chemical Letters, 2024, 35(10): 109560-. doi: 10.1016/j.cclet.2024.109560

    9. [9]

      Jumei ZhangZiheng ZhangGang LiHongjin QiaoHua XieLing Jiang . Ligand-mediated reactivity in CO oxidation of yttrium-nickel monoxide carbonyl complexes. Chinese Chemical Letters, 2025, 36(2): 110278-. doi: 10.1016/j.cclet.2024.110278

    10. [10]

      Yiming FangHuimin GaoKaiting ChengLiang BaiZhengtong LiYadong ZhaoXingtao Xu . An overview of photothermal materials for solar-driven interfacial evaporation. Chinese Chemical Letters, 2025, 36(3): 109925-. doi: 10.1016/j.cclet.2024.109925

    11. [11]

      Deqi FanYicheng TangYemei LiaoYan MiYi LuXiaofei Yang . Two birds with one stone: Functionalized wood composites for efficient photocatalytic hydrogen production and solar water evaporation. Chinese Chemical Letters, 2024, 35(9): 109441-. doi: 10.1016/j.cclet.2023.109441

    12. [12]

      Honglin Gao Chunlin Yuan Hongyu Chen Aiyi Dong Pan Gao Guangjin Hou . Surface gallium hydride on Ga2O3 polymorphs: A comparative solid-state NMR study. Chinese Journal of Structural Chemistry, 2025, 44(4): 100561-100561. doi: 10.1016/j.cjsc.2025.100561

    13. [13]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    14. [14]

      Zhiwei ZhongYanbin HuangWantai Yang . A simple photochemical method for surface fluorination using perfluoroketones. Chinese Chemical Letters, 2024, 35(5): 109339-. doi: 10.1016/j.cclet.2023.109339

    15. [15]

      Lu DaiYuxin RenShuang LiMeidi WangChentao HuYa-Pan WuGuangtong HaiDong-Sheng Li . Room-temperature synthesis of Co(OH)2/Mo2TiC2Tx hetero-nanosheets with interfacial coupling for enhanced oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(4): 109774-. doi: 10.1016/j.cclet.2024.109774

    16. [16]

      Mei PengWei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899

    17. [17]

      Wei SunAnjing LiaoLi LeiXu TangYa WangJian Wu . Research progress on piperidine-containing compounds as agrochemicals. Chinese Chemical Letters, 2025, 36(1): 109855-. doi: 10.1016/j.cclet.2024.109855

    18. [18]

      Xinlong HanHuiying ZengChao-Jun Li . Trifluoromethylative homo-coupling of carbonyl compounds. Chinese Chemical Letters, 2025, 36(1): 109817-. doi: 10.1016/j.cclet.2024.109817

    19. [19]

      Beitong ZhuXiaorui YangLirong JiangTianhong ChenShuangfei WangLintao Zeng . A portable and versatile fluorescent platform for high-throughput screening of toxic phosgene, diethyl chlorophosphate and volatile acyl chlorides. Chinese Chemical Letters, 2025, 36(1): 110222-. doi: 10.1016/j.cclet.2024.110222

    20. [20]

      Erzhuo ChengYunyi LiWei YuanWei GongYanjun CaiYuan GuYong JiangYu ChenJingxi ZhangGuangquan MoBin Yang . Galvanostatic method assembled ZIFs nanostructure as novel nanozyme for the glucose oxidation and biosensing. Chinese Chemical Letters, 2024, 35(9): 109386-. doi: 10.1016/j.cclet.2023.109386

Metrics
  • PDF Downloads(0)
  • Abstract views(699)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return