Citation: Yan-Zuo Chen, Yu-Kun Huang, Yuan Chen, Ya-Jing Ye, Kai-Yan Lou, Feng Gao. Novel nanoparticles composed of chitosan and β-cyclodextrin derivatives as potential insoluble drug carrier[J]. Chinese Chemical Letters, ;2015, 26(7): 909-913. doi: 10.1016/j.cclet.2015.05.044 shu

Novel nanoparticles composed of chitosan and β-cyclodextrin derivatives as potential insoluble drug carrier

  • Corresponding author: Feng Gao, 
  • Received Date: 31 March 2015
    Available Online: 7 May 2015

    Fund Project: This work was financially supported by Postdoctoral Science Foundation of China (No. 2014M550222) (No. 2014M550222) Shanghai Postdoctoral Sustentation Fund (No. 14R21410500). The authors also acknowledge the support from School of Pharmacy, Fudan University & the Open Project Program of Key Lab of Smart Drug Delivery (Fudan University) (No. 14R21410500) Ministry of Education (No. SDD2014-2) (No. SDD2014-2) State Key Laboratory of Molecular Engineering of Polymers (Fudan University, No. K2015-15) (Fudan University, No. K2015-15)

  • This research was aim to develop novel cyclodextrin/chitosan (CD/CS) nanocarriers for insoluble drug delivery through themild ionic gelation method previously developed by our lab. A series of different bcyclodextrin (β-CD) derivatives were incorporated into CS nanoparticles including hydroxypropyl-bcyclodextrin (HP-β-CD), sulphobutylether-β-cyclodextrin (SB-β-CD), and 2,6-di-O-methy-β-cyclodextrin (DM-β-CD). Various process parameters for nanoparticle preparation and their effects on physicochemical properties of CD/CS nanoparticles were investigated, such as the type of CD derivatives, CD and CS concentrations, the mass ratio of CS to TPP (CS/TPP), and pH values. In the optimal condition, CD/CS nanoparticles were obtained in the size range of 215-276 nm and with the zeta potential from 30.22 mV to 35.79 mV. Moreover, the stability study showed that the incorporation of CD rendered the CD/CS nanocarriers more stable than CS nanoparticles in PBS buffer at pH 6.8. For their easy preparation and adjustable parameters in nanoparticle formation as well as the diversified hydrophobic core of CD derivatives, the novel CD/CS nanoparticles developed herein might represent an interesting and versatile drug delivery platform for a variety of poorly water-soluble drugs with different physicochemical properties.
  • 加载中
    1. [1]

      [1] L. Zhang, F.X. Gu, J.M. Chan, et al., Nanoparticles in medicine: therapeutic applications and developments, Clin. Pharmacol. Ther. 83 (2008) 761–769.

    2. [2]

      [2] D. Brambilla, B. Le Droumaguet, J. Nicolas, et al., Nanotechnologies for Alzheimer's disease: diagnosis, therapy, and safety issues, Nanomedicine 7 (2011) 521–540.

    3. [3]

      [3] A.O. Elzoghby, W.M. Samy, N.A. Elgindy, Albumin-based nanoparticles as potential controlled release drug delivery systems, J. Control. Release 157 (2012) 168–182.

    4. [4]

      [4] R. Singh, J.W. Lillard Jr., Nanoparticle-based targeted drug delivery, Exp. Mol. Pathol. 86 (2009) 215–223.

    5. [5]

      [5] M. Ferrari, Cancer nanotechnology: opportunities and challenges, Nat. Rev. Cancer 5 (2005) 161–171.

    6. [6]

      [6] S. Naahidi, M. Jafari, F. Edalat, K. Raymond, A. Khademhosseini, Biocompatibility of engineered nanoparticles for drug delivery, J. Control. Release 166 (2013) 182–194.

    7. [7]

      [7] J.D. Byrne, T. Betancourt, L. Brannon-Peppas, Active targeting schemes for nanoparticle systems in cancer therapeutics, Adv. Drug Del. Rev. 60 (2008) 1615–1626.

    8. [8]

      [8] S.A. Agnihotri, N.N. Mallikarjuna, T.M. Aminabhavi, Recent advances on chitosanbasedmicro- andnanoparticles in drug delivery, J. Control. Release 100 (2004) 5–28.

    9. [9]

      [9] S.R. Jameela, P.G. Latha, A. Subramoniam, A. Jayakrishnan, Antitumour activity of mitoxantrone-loaded chitosan microspheres against Ehrlich ascites carcinoma, J. Pharm. Pharmacol. 48 (1996) 685–688.

    10. [10]

      [10] S. Mitra, U. Gaur, P.C. Ghosh, A.N. Maitra, Tumour targeted delivery of encapsulated dextran–doxorubicin conjugate using chitosan nanoparticles as carrier, J. Control. Release 74 (2001) 317–323.

    11. [11]

      [11] P. Yousefpour, F. Atyabi, E. Vasheghani-Farahani, A.A. Movahedi, R. Dinarvand, Targeted delivery of doxorubicin-utilizing chitosan nanoparticles surfacefunctionalized with anti-Her2 trastuzumab, Int. J. Nanomed. 6 (2011) 1977–1990.

    12. [12]

      [12] Z.T. Yuan, Y.J. Ye, F. Gao, et al., Chitosan-graft-β-cyclodextrin nanoparticles as a carrier for controlled drug release, Int. J. Pharm. 446 (2013) 191–198.

    13. [13]

      [13] S.S. Gao, J. Sun, D.J. Fu, et al., Preparation, characterization and pharmacokinetic studies of tacrolimus-dimethyl-β-cyclodextrin inclusion complex-loaded albumin nanoparticles, Int. J. Pharm. 427 (2012) 410–416.

    14. [14]

      [14] Y.J. Ye, Y. Sun, H.L. Zhao, et al., A novel lactoferrin-modified β-cyclodextrinnanocarrier for brain-targeting drug delivery, Int. J. Pharm. 458 (2013) 110–117.

    15. [15]

      [15] C. Yang, Recent progress in supramolecular chiral photochemistry, Chin. Chem. Lett. 24 (2013) 437–441.

    16. [16]

      [16] H. Hamada, K. Ishihara, N. Masuoka, K. Mikuni, N. Nakajima, Enhancement of water-solubility and bioactivity of paclitaxel using modified cyclodextrins, J. Biosci. Bioeng. 102 (2006) 369–371.

    17. [17]

      [17] A. García, D. Leonardi, M.O. Salazar, M.C. Lamas, Modified β-cyclodextrin inclusion complex to improve the physicochemical properties of albendazole. Complete in vitro evaluation and characterization, PLOS ONE 9 (2014) e88234.

    18. [18]

      [18] C.A. Ventura, S. Tommasini, A. Falcone, et al., Influence of modified cyclodextrins on solubility and percutaneous absorption of celecoxib through human skin, Int. J. Pharm. 314 (2006) 37–45.

    19. [19]

      [19] J.G. Ji, S.L. Hao, W.Q. Liu, et al., Preparation and evaluation of O-carboxymethylchitosan/cyclodextrin nanoparticles as hydrophobic drug delivery carriers, Polym. Bull. 67 (2011) 1201–1213.

    20. [20]

      [20] A. Vyas, S. Saraf, S. Saraf, Encapsulation of cyclodextrincomplexed simvastatin in chitosan nanocarriers: a novel technique for oral delivery, J. Incl. Phenom. Macrocycl. Chem. 66 (2010) 251–259.

    21. [21]

      [21] A.A. Mahmoud, G.S. El-Feky, R. Kamel, G.E.A. Awad, Chitosan/sulfobutyletherb- cyclodextrin nanoparticles as a potential approach for ocular drug delivery, Int. J. Pharm. 413 (2011) 229–236.

    22. [22]

      [22] Y. Yang, Y.M. Zhang, Y. Chen, J.T. Chen, Y. Liu, Targeted polysaccharide nanoparticle for adamplatin prodrug delivery, J. Med. Chem. 56 (2013) 9725–9736.

    23. [23]

      [23] D. Zhao, Y. Chen, Y. Liu, Comparative studies on molecular induced aggregation of hepta-imidazoliumyl-β-cyclodextrin towards anionic surfactants, Chin. Chem. Lett. (2014), http://dx.doi.org/10.1016/j.cclet.2014.11.028.

    24. [24]

      [24] M.L. Tsai, R.H. Chen, S.W. Bai, W.Y. Chen, The storage stability of chitosan/tripolyphosphate nanoparticles in a phosphate buffer, Carbohydr. Polym. 84 (2011) 756–761.

  • 加载中
    1. [1]

      Lian JinJuan ZhangLibo NieYan DengGhulam Jilany KhanaNongyue He . Chitosan nanoparticles act as promising carriers of microRNAs to brain cells in neurodegenerative diseases. Chinese Chemical Letters, 2025, 36(10): 110774-. doi: 10.1016/j.cclet.2024.110774

    2. [2]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

    3. [3]

      Linshan PengQihang PengTianxiang JinZhirong LiuYong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891

    4. [4]

      Yujie LiYa-Nan WangYin-Gen LuoHongcai YangJinrui RenXiao Li . Advances in synthetic biology-based drug delivery systems for disease treatment. Chinese Chemical Letters, 2024, 35(11): 109576-. doi: 10.1016/j.cclet.2024.109576

    5. [5]

      Qiang LiJiangbo FanHongkai MuLin ChenYongzhen YangShiping Yu . Nucleus-targeting orange-emissive carbon dots delivery adriamycin for enhanced anti-liver cancer therapy. Chinese Chemical Letters, 2024, 35(6): 108947-. doi: 10.1016/j.cclet.2023.108947

    6. [6]

      Shuheng ZhangYuanyuan ZhangWanyu WangYuzhu HuXinchuan ChenBilan WangXiang Gao . A combination strategy of DOX and VEGFR-2 targeted inhibitor based on nanomicelle for enhancing lymphoma therapy. Chinese Chemical Letters, 2024, 35(12): 109658-. doi: 10.1016/j.cclet.2024.109658

    7. [7]

      Yanfei LiuYaqin HuYifu TanQiwen ChenZhenbao Liu . Tumor acidic microenvironment activatable DNA nanostructure for precise cancer cell targeting and inhibition. Chinese Chemical Letters, 2025, 36(1): 110289-. doi: 10.1016/j.cclet.2024.110289

    8. [8]

      Dong-Bing Cheng Junxin Duan Haiyu Gao . Experimental Teaching Design on Chitosan Extraction and Preparation of Antibacterial Gel. University Chemistry, 2024, 39(2): 330-339. doi: 10.3866/PKU.DXHX202308053

    9. [9]

      Zimo Shen Tongwei Zhang Zhiyi Zhu Zonghao Gong Qing Feng Jinyi Yang Zhen Li Min Liu Wei Qi . From Alkaloid to Anticancer Agent: The Transformative Journey of Camptothecin. University Chemistry, 2025, 40(10): 161-165. doi: 10.12461/PKU.DXHX202411027

    10. [10]

      Zhilong XieGuohui ZhangYa MengYefei TongJian DengHonghui LiQingqing MaShisong HanWenjun Ni . A natural nano-platform: Advances in drug delivery system with recombinant high-density lipoprotein. Chinese Chemical Letters, 2024, 35(11): 109584-. doi: 10.1016/j.cclet.2024.109584

    11. [11]

      Wenjia WangXingyue HeXiaojie WangTiantian ZhaoOsamu MuraokaGenzoh TanabeWeijia XieTianjiao ZhouLei XingQingri JinHulin Jiang . Glutathione-depleted cyclodextrin pseudo-polyrotaxane nanoparticles for anti-inflammatory oxaliplatin (Ⅳ) prodrug delivery and enhanced colorectal cancer therapy. Chinese Chemical Letters, 2024, 35(4): 108656-. doi: 10.1016/j.cclet.2023.108656

    12. [12]

      Linghui ZouMeng ChengKaili HuJianfang FengLiangxing Tu . Vesicular drug delivery systems for oral absorption enhancement. Chinese Chemical Letters, 2024, 35(7): 109129-. doi: 10.1016/j.cclet.2023.109129

    13. [13]

      Fengjie LiuFansu MengZhenjiang YangHuan WangYuehong RenYu CaiXingwang Zhang . Exosome-biomimetic nanocarriers for oral drug delivery. Chinese Chemical Letters, 2024, 35(9): 109335-. doi: 10.1016/j.cclet.2023.109335

    14. [14]

      Rui TIANJiamin CHAIJunyu CHENYuan RENXuehua SUNHaoyu LIYuecheng ZHANG . Chitosan/silica-coated copper nanoclusters: Synthesis and application in cefixime detection. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1903-1915. doi: 10.11862/CJIC.20250026

    15. [15]

      Yayun ShiCongcong LiuZhijun ZuoXiaowei Yang . Self-assembled ultrathick MoS2 conductive hydrogel membrane via ionic gelation for superior capacitive energy storage. Chinese Chemical Letters, 2025, 36(6): 109772-. doi: 10.1016/j.cclet.2024.109772

    16. [16]

      Liping ZhaoXixi GuoZhimeng ZhangXi LuQingxuan ZengTianyun FanXintong ZhangFenbei ChenMengyi XuMin YuanZhenjun LiJiandong JiangJing PangXuefu YouYanxiang WangDanqing Song . Novel berberine derivatives as adjuvants in the battle against Acinetobacter baumannii: A promising strategy for combating multi-drug resistance. Chinese Chemical Letters, 2024, 35(10): 109506-. doi: 10.1016/j.cclet.2024.109506

    17. [17]

      Jing FengYanhong LiuLiming GongChenfei LiuCongcong XiaoLiqing ChenMingji JinZhonggao GaoWei HuangYubo Li . Recent progress on drug delivery systems of regulating intratumoral bacteria for tumor therapy. Chinese Chemical Letters, 2025, 36(11): 110907-. doi: 10.1016/j.cclet.2025.110907

    18. [18]

      Jiajia WangXinXin GeYajing XiangXiaoliang QiYing LiHangbin XuErya CaiChaofan ZhangYulong LanXiaojing ChenYizuo ShiZhangping LiJianliang Shen . An ionic liquid functionalized sericin hydrogel for drug-resistant bacteria-infected diabetic wound healing. Chinese Chemical Letters, 2025, 36(2): 109819-. doi: 10.1016/j.cclet.2024.109819

    19. [19]

      Rui LiRuijie LuLibin YangJianwen LiZige GuoQiquan YanMengjun LiYazhuo NiKeying ChenYaoyang LiBo XuMengzhen CuiZhan LiZhiying Zhao . Immobilization of chitosan nano-hydroxyapatite alendronate composite microspheres on polyetheretherketone surface to enhance osseointegration by inhibiting osteoclastogenesis and promoting osteogenesis. Chinese Chemical Letters, 2025, 36(4): 110242-. doi: 10.1016/j.cclet.2024.110242

    20. [20]

      Qian ChenAnyang ShenTaotao HuangXinya HanJian ZhangHui JiangRenyong LiuYong PanKui Zhang . Ultrasensitive and selective detection of chemical nerve agent simulants based on naphthalimide functionalized chitosan as fluorescent nanofibers. Chinese Chemical Letters, 2025, 36(7): 110331-. doi: 10.1016/j.cclet.2024.110331

Metrics
  • PDF Downloads(0)
  • Abstract views(1090)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return