Citation: Cai-Li Sun, Jiang-Fei Xu, Yu-Zhe Chen, Li-Ya Niu, Li-Zhu Wua, Chen-Ho Tung, Qing-Zheng Yang. Monofunctionalized pillar[5]arene-based stable [1]pseudorotaxane[J]. Chinese Chemical Letters, ;2015, 26(7): 843-846. doi: 10.1016/j.cclet.2015.05.030 shu

Monofunctionalized pillar[5]arene-based stable [1]pseudorotaxane

  • Corresponding author: Yu-Zhe Chen,  Qing-Zheng Yang, 
  • Received Date: 27 March 2015
    Available Online: 22 April 2015

    Fund Project: We are grateful for the financial support from the 973 Program (No. 2013CB933800) (No. 2013CB933800) the National Natural Science Foundation of China (Nos. 21222210, 21474124, 21472202). (Nos. 21222210, 21474124, 21472202)

  • We reported a new monofunctionalized pillar[5]arene bearing imidazolium moiety that formed stable [1]pseudorotaxane even at high concentration (100 mmol/L) in chloroform. The self-assembly was detailed investigated by multiple methods, including varying concentration 1H NMR, 2D COSY NMR, 2D NOESY NMR, viscosity measurements, 2D DOSY NMR, and HR-ESI-MS analysis. [1]Rotaxane was obtained efficiently through photo thiol-ene reaction which further confirmed the formation of [1]pseudorotaxane.
  • 加载中
    1. [1]

      [1] T. Ogoshi, S. Kanai, S. Fujinami, T.A. Yamagishi, Y. Nakamoto, para-Bridged symmetrical pillar[5]arenes: their Lewis acid catalyzed synthesis and host–guest property, J. Am. Chem. Soc. 130 (2008) 5022–5023.

    2. [2]

      [2] D.R. Cao, Y.H. Kou, J.Q. Liang, et al., A facile and efficient preparation of pillararenes and a pillarquinone, Angew. Chem. Int. Ed. 48 (2009) 9721–9723.

    3. [3]

      [3] M. Xue, Y. Yang, X.D. Chi, Z.B. Zhang, F.H. Huang, Pillararenes, a new class of macrocycles for supramolecular chemistry, Acc. Chem. Res. 45 (2012) 1294–1308.

    4. [4]

      [4] H.C. Zhang, Y.L. Zhao, Pillararene-based assemblies: design principle, preparation and applications, Chem. Eur. J. 19 (2013) 16862–16879.

    5. [5]

      [5] T. Ogoshi, T. Yamagishi, Pillar[5]- and pillar[6]arene-based supramolecular assemblies built by using their cavity-size-dependent host–guest interactions, Chem. Commun. 50 (2014) 4776–4787.

    6. [6]

      [6] H. Li, Y.W. Yang, Gold nanoparticles functionalized with supramolecular macrocycles, Chin. Chem. Lett. 24 (2013) 545–552.

    7. [7]

      [7] T. Ogoshi, S. Tanaka, T. Yamagishi, Y. Nakamoto, Ionic liquid molecules (ils) as novel guests for pillar[5]arene: 1:2 host–guest complexes between pillar[5]arene and ILs in organic media, Chem. Lett. 40 (2011) 96–98.

    8. [8]

      [8] N.L. Strutt, R.S. Forgan, J.M. Spruell, Y.Y. Botros, J.F. Stoddart, Monofunctionalized pillar[5]arene as a host for alkanediamines, J. Am. Chem. Soc. 133 (2011) 5668– 5671.

    9. [9]

      [9] X.Y. Wang, K. Han, J. Li, X.S. Jia, C.J. Li, Pillar[5]arene-neutral guest recognition based supramolecular alternating copolymer containing [c2] daisy chain and bispillar[5]arene units, Polym. Chem. 4 (2013) 3998–4003.

    10. [10]

      [10] L.L. Tan, Y.M. Zhang, B. Li, et al., Selective recognition of “solvent” molecules in solution and the solid state by 1:4-dimethoxypillar[5]arene driven by attractive forces, New J. Chem. 38 (2014) 845–851.

    11. [11]

      [11] Y.J. Zhou, Z.T. Li, X.D. Chi, C. Thompson, Y. Yao, Formation of a [2]pseudorotaxane based on a pillar[5]arene and a rigid guest in solution and in the solid state, Chem. Commun. 50 (2014) 10482–10484.

    12. [12]

      [12] C.J. Li, K. Han, J. Li, et al., Supramolecular polymers based on efficient pillar[5]- arene neutral guest motifs, Chem. Eur. J. 19 (2013) 11892–11897.

    13. [13]

      [13] X.S. Hu, H.M. Deng, J. Li, X.S. Jia, C.J. Li, Selective binding of unsaturated aliphatic hydrocarbons by a pillar[5]arene, Chin. Chem. Lett. 24 (2013) 707–709.

    14. [14]

      [14] M. Pan, M. Xue, Cover picture: synthesis of a pillar[5]arene with both hydroxyl and methoxycarbonyl-methoxy groups and its host–guest complexation with a bis(imidazolium) salt, Chin. J. Chem. 32 (2014) 109.

    15. [15]

      [15] X. Lou, H. Chen, X. Jia, C. Li, Complexation of linear aliphatic ester, aldehyde and ketone guests by per-ethylated pillar[5]arene, Chin. J. Chem. 33 (2015) 335–338.

    16. [16]

      [16] H. Huang, L. Liu, W. Duan, Y. Huang, G. Lin, Synthesis of copillar[5]arenes and their host–guest complexation with two types of guests, Chin. J. Chem. 33 (2015) 384– 388.

    17. [17]

      [17] Z.B. Zhang, G.C. Yu, C.Y. Han, et al., Formation of a cyclic dimer containing two mirror image monomers in the solid state controlled by van der Waals forces, Org. Lett. 13 (2011) 4818–4821.

    18. [18]

      [18] S.Y. Dong, J.Y. Yuan, F.H. Huang, A pillar[5]arene/imidazolium [2]rotaxane: solvent- and thermo-driven molecular motions and supramolecular gel formation, Chem. Sci. 5 (2014) 247–252.

    19. [19]

      [19] J.F. Xu, Y.Z. Chen, L.Z. Wu, C.H. Tung, Q.Z. Yang, Dynamic covalent bond based on reversible photo [4 + 4] cycloaddition of anthracene for construction of doubledynamic polymers, Org. Lett. 15 (2013) 6148–6151.

    20. [20]

      [20] C.Y. Cheng, P.R. McGonigal, W.G. Liu, et al., Energetically demanding transport in a supramolecular assembly, J. Am. Chem. Soc. 136 (2014) 14702–14705.

    21. [21]

      [21] N.K. Jena, N.A. Murugan, Solvent-dependent conformational states of a [2]rotaxane- based molecular machine: a molecular dynamics perspective, J. Phys. Chem. C 117 (2013) 25059–25068.

    22. [22]

      [22] C. Gaeta, C. Talotta, P. Neri, Pseudorotaxane orientational stereoisomerism driven by pi-electron density, Chem. Commun. 50 (2014) 9917–9920.

    23. [23]

      [23] H. Chen, X. Jia, C. Li, A pillar[6]arene-[2]pseudorotaxane based pH-sensitive molecular switch, Chin. J. Chem. 33 (2015) 343–345.

    24. [24]

      [24] M.J. Langton, O.A. Blackburn, T. Lang, S. Faulkner, P.D. Beer, Nitrite-templated synthesis of lanthanide-containing [2]rotaxanes for anion sensing, Angew. Chem. Int. Ed. 53 (2014) 11463–11466.

    25. [25]

      [25] S. Sun, J.B. Shi, Y.P. Dong, et al., A pillar[5]arene-based side-chain pseudorotaxanes and polypseudorotaxanes as novel fluorescent sensors for the selective detection of halogen ions, Chin. Chem. Lett. 24 (2013) 987–992.

    26. [26]

      [26] S. Sun, X.Y. Hu, D.Z. Chen, et al., Pillar[5]arene-based side-chain polypseudorotaxanes as an anion-responsive fluorescent sensor, Polym. Chem. 4 (2013) 2224–2229.

    27. [27]

      [27] M.H. Li, Y. Yan, C. Teh, V. Korzh, Y.L. Zhao, NIR-triggered drug release from switchable rotaxane-functionalized silica-covered Au nanorods, Chem. Commun. 50 (2014) 9745–9748.

    28. [28]

      [28] L.H. Wang, Z.J. Zhang, H.Y. Zhang, H.L. Wu, Y. Liu, A twin-axial[5]pseudorotaxane based on cucurbit[8]uril and alpha-cyclodextrin, Chin. Chem. Lett. 24 (2013) 949– 952.

    29. [29]

      [29] M.F. Ni, X.Y. Hu, J.L. Jiang, L.Y. Wang, The self-complexation of mono-ureafunctionalized pillar[5]arenes with abnormal urea behaviors, Chem. Commun. 50 (2014) 1317–1319.

    30. [30]

      [30] T. Ogoshi, K. Demachi, K. Kitajima, T. Yamagishi, Monofunctionalized pillar[5]- arenes: synthesis and supramolecular structure, Chem. Commun. 47 (2011) 7164–7166.

    31. [31]

      [31] N.L. Strutt, H.C. Zhang, M.A. Giesener, J.Y. Lei, J.F. Stoddart, A self-complexing and self-assembling pillar[5]arene, Chem. Commun. 48 (2012) 1647–1649.

    32. [32]

      [32] B.Y. Xia, B. Zheng, C.Y. Han, et al., A novel pH-responsive supramolecular polymer constructed by pillar[5]arene-based host–guest interactions, Polym. Chem. 4 (2013) 2019–2024.

    33. [33]

      [33] Y.L. Liu, Z.Q. Wang, X. Zhang, Characterization of supramolecular polymers, Chem. Soc. Rev. 41 (2012) 5922–5932.

    34. [34]

      [34] Z.B. Zhang, Y. Luo, J.Z. Chen, et al., Formation of linear supramolecular polymers that is driven by C–H center dot center dot center dot pi interactions in solution and in the solid state, Angew. Chem. Int. Ed. 50 (2011) 1397–1401.

    35. [35]

      [35] Z. Zhang, C. Han, G. Yu, F. Huang, A solvent-driven molecular spring, Chem. Sci. 3 (2012) 3026.

    36. [36]

      [36] L.Z. Liu, L.Y. Wang, C.C. Liu, et al., Dimerization control in the self-assembly behavior of copillar[5]arenes bearing omega-hydroxyalkoxy groups, J. Org. Chem. 77 (2012) 9413–9417.

    37. [37]

      [37] C.E. Hoyle, A.B. Lowe, C.N. Bowman, Thiol-click chemistry: a multifaceted toolbox for small molecule and polymer synthesis, Chem. Soc. Rev. 39 (2010) 1355–1387.

  • 加载中
    1. [1]

      Bingbing ShiYuchun WangYi ZhouXing-Xing ZhaoYizhou LiNuoqian YanWen-Juan QuQi LinTai-Bao Wei . A supramolecular oligo[2]rotaxane constructed by orthogonal platinum(Ⅱ) metallacycle and pillar[5]arene-based host–guest interactions. Chinese Chemical Letters, 2024, 35(10): 109540-. doi: 10.1016/j.cclet.2024.109540

    2. [2]

      Yuanpeng Ye Longfei Yao Guofeng Liu . Engineering circularly polarized luminescence through symmetry manipulation in achiral tetraphenylpyrazine structures. Chinese Journal of Structural Chemistry, 2025, 44(2): 100460-100460. doi: 10.1016/j.cjsc.2024.100460

    3. [3]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    4. [4]

      Xuanyu WangZhao GaoWei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757

    5. [5]

      Yuwen ZhuXiang DengYan WuBaode ShenLingyu HangYuye XueHailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733

    6. [6]

      Ting-Ting HuangJin-Fa ChenJuan LiuTai-Bao WeiHong YaoBingbing ShiQi Lin . A novel fused bi-macrocyclic host for sensitive detection of Cr2O72− based on enrichment effect. Chinese Chemical Letters, 2024, 35(7): 109281-. doi: 10.1016/j.cclet.2023.109281

    7. [7]

      Jingqi XinShupeng HanMeichen ZhengChenfeng XuZhongxi HuangBin WangChangmin YuFeifei AnYu Ren . A nitroreductase-responsive nanoprobe with homogeneous composition and high loading for preoperative non-invasive tumor imaging and intraoperative guidance. Chinese Chemical Letters, 2024, 35(7): 109165-. doi: 10.1016/j.cclet.2023.109165

    8. [8]

      Keyang LiYanan WangYatao XuGuohua ShiSixian WeiXue ZhangBaomei ZhangQiang JiaHuanhua XuLiangmin YuJun WuZhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511

    9. [9]

      Xian YanHuawei XieGao WuFang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279

    10. [10]

      Feng CaoChunxiang XianTianqi YangYue ZhangHaifeng ChenXinping HeXukun QianShenghui ShenYang XiaWenkui ZhangXinhui Xia . Gelation-pyrolysis strategy for fabrication of advanced carbon/sulfur cathodes for lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 110575-. doi: 10.1016/j.cclet.2024.110575

    11. [11]

      Jingyu ChenSha WuYuhao WangJiong Zhou . Near-perfect separation of alicyclic ketones and alicyclic alcohols by nonporous adaptive crystals of perethylated pillar[5]arene and pillar[6]arene. Chinese Chemical Letters, 2025, 36(4): 110102-. doi: 10.1016/j.cclet.2024.110102

    12. [12]

      Lei ZhouYoujun ZhouLizhen FangYiqiao BaiYujia MengLiang LiJie YangYong Yao . Pillar[5]arene based artificial light-harvesting supramolecular polymer for efficient and recyclable photocatalytic applications. Chinese Chemical Letters, 2024, 35(9): 109509-. doi: 10.1016/j.cclet.2024.109509

    13. [13]

      Hui LiYanxing QiJia ChenJuanjuan WangMin YangHongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659

    14. [14]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    15. [15]

      Cheng-Yan WuYi-Nan GaoZi-Han ZhangRui LiuQuan TangZhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649

    16. [16]

      Changlin SuWensheng CaiXueguang Shao . Water as a probe for the temperature-induced self-assembly transition of an amphiphilic copolymer. Chinese Chemical Letters, 2025, 36(4): 110095-. doi: 10.1016/j.cclet.2024.110095

    17. [17]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    18. [18]

      Zengchao GuoWeiwei LiuTengfei LiuJinpeng WangHui JiangXiaohui LiuYossi WeizmannXuemei Wang . Engineered exosome hybrid copper nanoscale antibiotics facilitate simultaneous self-assembly imaging and elimination of intracellular multidrug-resistant superbugs. Chinese Chemical Letters, 2024, 35(7): 109060-. doi: 10.1016/j.cclet.2023.109060

    19. [19]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    20. [20]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

Metrics
  • PDF Downloads(0)
  • Abstract views(605)
  • HTML views(32)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return