Citation: Dong-Sheng Xue, Jiang-Bo Wang, Shan-Jing Yao. High production of β-glucosidase from a marine Aspergillus niger immobilized on towel gourd vegetable sponges[J]. Chinese Chemical Letters, ;2015, 26(8): 1011-1015. doi: 10.1016/j.cclet.2015.05.019 shu

High production of β-glucosidase from a marine Aspergillus niger immobilized on towel gourd vegetable sponges

  • Corresponding author: Shan-Jing Yao, 
  • Received Date: 4 January 2015
    Available Online: 29 April 2015

  • To produce β-glucosidase by consecutive batch fermentation, amarine Aspergillus niger was immobilized on a natural carrier, towel gourd vegetable sponges. The immobilized mycelia were 0.15 g/g carrier with the immobilized biomass percentage of over 95%. The immobilized mycelia possessed the long durability (22.5 days). The maximum production occurred 1.5 day earlier by the immobilized mycelia than by the free mycelia. β-Glucosidase production of five consecutive batches was over 110 U/mL. At high salinity, the activity and stability of β-glucosidase from the marine A. niger increased remarkable. Immobilizing the marine A. niger on the novel natural carrier achieved the efficient production of β-glucosidase.
  • 加载中
    1. [1]

      [1] U. Hö lker, M. Hö lker, J. Lenz, Biotechnological advantages of laboratory-scale solid-state fermentation with fungi, Appl. Microbiol. Biotechnol. 64 (2004) 175-186.

    2. [2]

      [2] J.P.H. Van Wyk, Biotechnology and the utilization of biowaste as a resource for bioproduct development, Trends Biotechnol. 19 (2001) 172-177.

    3. [3]

      [3] G. Rastogi, A. Bhalla, A. Adhikari, et al., Characterization of thermostable cellulases produced by Bacillus and Geobacillus strains, Bioresour. Technol. 101 (2010) 8798-8806.

    4. [4]

      [4] M. Quirasco, M. Remaud-Simeon, P. Monsan, A. Ló pez-Munguía, Experimental behavior of a whole cell immobilized dextransucrase biocatalyst in batch and packed bed reactors, Bioprocess Biosyst. Eng. 20 (1999) 289-295.

    5. [5]

      [5] I. Virkajä rvi, M. Linko, Immobilization: a revolution in traditional brewing, Naturwissenschaften 86 (1999) 112-122.

    6. [6]

      [6] C. Roisin, C. Bienaime, J.E. Nava Saucedo, J.-N. Barbotin, Influence of the microenvironment in immobilized Gibberella fujikuroi, in: R.H. Wijffels, R.M. Buitelaar, C. Bucke, J. Tramper (Eds.), Immobilized Cells Basics and Applications, Elsevier, Amsterdam, 1996, pp. 189-195.

    7. [7]

      [7] K.A. Lusta, N.G. Starostina, B.A. Fikhte, Immobilization of microorganisms: cytophysiological aspects, in: J.A.M. de Bont, J. Visser, B. Mattiasson, J. Tramper (Eds.), Proceedings of an International Symposium: Physiology of Immobilized Cells, Elsevier, Amsterdam, 1990, pp. 557-562.

    8. [8]

      [8] T.W. Chiou, Y.C. Wang, H.S. Liu, Utilizing the macroporous packed bed for insect cell/baculovirus expression. Part 2: the production of human interleukin-5 in polyurethane foam and cellulose foam packed bed bioreactors, Bioprocess Eng. 18 (1998) 91-100.

    9. [9]

      [9] C. Lapadatescu, G. Feron, C. Vergoignan, et al., Influence of cell immobilization on the production of benzaldehyde and benzyl alcohol by the white-rot fungi Bjerkandera adusta, Ischnoderma benzoinum and Dichomitus squalens, Appl. Microbiol. Biotechnol. 47 (1997) 708-714.

    10. [10]

      [10] N.V. Sankpal, A.P. Joshi, B.D. Kulkarni, Citric acid production by Aspergillus niger immobilized on cellulose microfifibrils: influence of morphology and fermenter conditions on productivity, Process Biochem. 36 (2001) 1129-1139.

    11. [11]

      [11] N.V. Sankpal, B.D. Kulkarni, Optimization of fermentation conditions for gluconic acid production using Aspergillus niger immobilized on cellulose microfibrils, Process Biochem. 37 (2002) 1343-1350.

    12. [12]

      [12] D.S. Xue, H.Y. Chen, D.Q. Lin, Y.X. Guan, S.J. Yao, Optimization of a natural medium for cellulase by a marine Aspergillus niger using response surface methodology, Appl. Biochem. Biotechnol. 167 (2012) 1963-1972.

    13. [13]

      [13] D.S. Chahal, Solid-state fermentation with Trichoderma reesei for cellulase production, Appl. Environ. Microbiol. 49 (1985) 205-210.

    14. [14]

      [14] G.L. Miller, Use of dinitrosalicylic acid reagent for determination of reducing sugar, Anal. Chem. 31 (1959) 426-428.

    15. [15]

      [15] K.S. Siddiqui, A.A.N. Saqib, M.H. Rashid, M.I. Rajoka, Thermostabilization of carboxymethylcellulase from Aspergillus niger by carboxyl group modification, Biotechnol. Lett. 19 (1997) 325-330.

    16. [16]

      [16] A.-R. Joo, M. Jeya, K.-M. Lee, et al., Production and characterization of β-1,4-glucosidase from a strain of Penicillium pinophilum, Process Biochem. 45 (2010) 851-858.

    17. [17]

      [17] S.W. Kang, Y.S. Park, J.S. Lee, S.I. Hong, S.W. Kim, Production of cellulases and hemicellulases by Aspergillus niger KK2 from lignocellulosic biomass, Bioresour. Technol. 91 (2004) 153-156.

    18. [18]

      [18] Z.Y. Wen, W. Liao, S.L. Chen, Production of cellulase/β-glucosidase by the mixed fungi culture Trichoderma reesei and Aspergillus phoenicis on dairy manure, Process Biochem. 40 (2005) 3087-3094.

    19. [19]

      [19] P. Beguin, J.-P. Aubert, The biological degradation of cellulose, FEMS Microbiol. Rev. 13 (1994) 25-58.

    20. [20]

      [20] J.M. Lawther, R.C. Sun, W.B. Banks, Extraction, fractionation and characterization of structural polysaccharides from wheat straw, J. Agric. Food Chem. 43 (1995) 667-675.

    21. [21]

      [21] X.D. Liu, X. Wang, Study on pretreatment of crop straw, Food Fermentat. Ind. 34 (2008) 110-114.

    22. [22]

      [22] Z.L. Liu, S.A. Weber, M.A. Cotta, S.Z. Li, A new β-glucosidase producing yeast for lower-cost cellulosic ethanol production from xylose-extracted corncob residues by simultaneous saccharification and fermentation, Bioresour. Technol. 104 (2012) 410-416.

    23. [23]

      [23] J.-A. Ko, J.Y. Park, H.J. Kwon, et al., Purification and functional characterization of the first stilbene glucoside-specific β-glucosidase isolated from Lactobacillus kimchi, Enzyme Microb. Technol. 67 (2014) 59-66.

    24. [24]

      [24] C.Z. Zhang,D. Li, H.S.Yu,B.Zhang, F.X. Jin,Purificationand characterizationof piceidβ-D-glucosidase from Aspergillus oryzae, Process Biochem. 42 (2007) 83-88.

    25. [25]

      [25] L. Gao, F. Gao, X.K. Jiang, et al., Biochemical characterization of a new β-glucosidase (Cel3E) from Penicillium piceum and its application in boosting lignocelluloses bioconversion and forming disaccharide inducers: new insights into the role of β-glucosidase, Process Biochem. 49 (2014) 768-774.

    26. [26]

      [26] T.M. Silva, B.C. Pessel, C.R. Jean Silva, et al., Immobilization and high stability of an extracellular β-glucosidase from Aspergillus japonicus by ionic interactions, J. Mol. Catal. B: Enzym. 104 (2014) 95-100.

    27. [27]

      [27] S.S. Jagtap, S.S. Dhiman, T.-S. Kim, et al., Characterization of a β-1,4-glucosidase from a newly isolated strain of Pholiota adiposa and its application to the hydrolysis of biomass, Biomass Bioener. 54 (2013) 181-190.

  • 加载中
    1. [1]

      Jia ChenYun LiuZerong LongYan LiHongdeng Qiu . Colorimetric detection of α-glucosidase activity using Ni-CeO2 nanorods and its application to potential natural inhibitor screening. Chinese Chemical Letters, 2024, 35(9): 109463-. doi: 10.1016/j.cclet.2023.109463

    2. [2]

      Hong ZhangCui-Ping LiLi-Li WangZhuo-Da ZhouWen-Sen LiLing-Yi KongMing-Hua Yang . Asperochones A and B, two antimicrobial aromatic polyketides from the endophytic fungus Aspergillus sp. MMC-2. Chinese Chemical Letters, 2024, 35(9): 109351-. doi: 10.1016/j.cclet.2023.109351

    3. [3]

      Shuige ZhaoPengcheng YanPeipei LiuHaishan LiuNing LiPeng FuWeiming Zhu . Pyridapeptides F‒I, cyclohexapeptides from marine sponge-derived Streptomyces sp. OUCMDZ-4539. Chinese Chemical Letters, 2024, 35(7): 108950-. doi: 10.1016/j.cclet.2023.108950

    4. [4]

      Jiatong LiLinlin ZhangPeng HuangChengjun Ge . Carbon bridge effects regulate TiO2–acrylate fluoroboron coatings for efficient marine antifouling. Chinese Chemical Letters, 2025, 36(2): 109970-. doi: 10.1016/j.cclet.2024.109970

    5. [5]

      Yun-Feng LiuHui-Fang DuYa-Hui ZhangZhi-Qin LiuXiao-Qian QiDu-Qiang LuoFei Cao . Chaeglobol A, an unusual octocyclic sterol with antifungal activity from the marine-derived fungus Chaetomium globosum HBU-45. Chinese Chemical Letters, 2025, 36(3): 109858-. doi: 10.1016/j.cclet.2024.109858

    6. [6]

      Aimin FuChunmei ChenQin LiNanjin DingJiaxin DongYu ChenMengsha WeiWeiguang SunHucheng ZhuYonghui Zhang . Niduenes A−F, six functionalized sesterterpenoids with a pentacyclic 5/5/5/5/6 skeleton from endophytic fungus Aspergillus nidulans. Chinese Chemical Letters, 2024, 35(9): 109100-. doi: 10.1016/j.cclet.2023.109100

Metrics
  • PDF Downloads(0)
  • Abstract views(787)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return