Citation:
Jian Lu, Xiao-Bo Tian, Wei Huang. A new strategy for synthesis of branched cyclic peptide by Asn side-chain hydrazide ligation[J]. Chinese Chemical Letters,
;2015, 26(8): 946-950.
doi:
10.1016/j.cclet.2015.05.016
-
Here, we report a new strategy for rapid synthesis of branched peptide by side-chain hydrazide ligation at Asn. The hydrazide was converted to thioester at Asn side chain by NaNO2 and thiol reagent, and sequential ligation with an N-terminus Cys-peptide efficiently afforded the branched peptide. A branched cyclic peptide was successfully synthesized by side-chain ligation with a two-Cys-peptide and formation of a disulfide bond. This approach provides a new way for expeditious synthesis of branched peptides and facilitates the design of neopeptides as functional bio-mimics.
-
-
-
[1]
[1] G.J. Gorse, M.C. Keefer, R.B. Belshe, et al., A dose-ranging study of a prototype synthetic HIV-1MN V3 branched peptide vaccine. The National Institute of Allergy and Infectious Diseases AIDS Vaccine Evaluation Group, J. Infect. Dis. 173 (1996) 330-339.
-
[2]
[2] N. Yahi, J.M. Sabatier, S. Baghdiguian, F. Gonzalez-Scarano, J. Fantini, Synthetic multimeric peptides derived from the principal neutralization domain (V3 loop) of human immunodeficiency virus type 1 (HIV-1) gp120 bind to galactosylceramide and block HIV-1 infection in a human CD4-negative mucosal epithelial cell line, J. Virol. 69 (1995) 320-325.
-
[3]
[3] A. Benjouad, F. Chapuis, E. Fenouillet, J.C. Gluckman, Multibranched peptide constructs derived from the V3 loop of envelope glycoprotein gp120 inhibit human immunodeficiency virus type 1 infection through interaction with CD4, J. Virol. 206 (1995) 457-464.
-
[4]
[4] J.M. Sheridan, G.M. Hayes, B.M. Austen, Solid-phase synthesis and cyclization of a large branched peptide from IgG Fc with affinity for Fc γRI, J. Pept. Sci. 5 (1999) 555-562.
-
[5]
[5] A. Stavrakoudis, S. Makropoulou, V. Tsikaris, et al., Computational screening of branched cyclic peptide motifs as potential enzyme mimetics, J. Pept. Sci. 9 (2003) 145-155.
-
[6]
[6] D. Li, D.L. Elbert, The kinetics of the removal of the N-methyltrityl (Mtt) group during the synthesis of branched peptides, J. Pept. Res. 60 (2002) 300-303.
-
[7]
[7] S.A. Kates, S.B. Daniels, F. Albericio, Automated allyl cleavage for continuousflow synthesis of cyclic and branched peptides, Anal. Biochem. 212 (1993) 303-310.
-
[8]
[8] D. Delforge, M. Art, B. Gillon, et al., Automated solid-phase synthesis of cyclic peptides bearing a side-chain tail designed for subsequent chemical grafting, Anal. Biochem. 242 (1996) 180-186.
-
[9]
[9] G.B. Bloomberg, D. Askin, A.R. Gargaro, M.J.A. Tanner, Synthesis of a branched cyclic peptide using a strategy employing Fmoc chemistry and two additional orthogonal protecting groups, Tetrahedron Lett. 34 (1993) 4709-4712.
-
[10]
[10] S.W. Millward, H.D. Agnew, B. Lai, et al., In situ click chemistry: from small molecule discovery to synthetic antibodies, Integr. Biol. (Camb.) 5 (2013) 87-95.
-
[11]
[11] Y.J. Pu, H. Yuan, M. Yang, B. He, Z.W. Gu, Synthesis of peptide dendrimers with polyhedral oligomeric silsesquioxane cores via click chemistry, Chin. Chem. Lett. 24 (2013) 917-920.
-
[12]
[12] K.K. Pasunooti, R. Yang, S. Vedachalam, et al., Synthesis of 4-mercapto-L-lysine derivatives: potential building blocks for sequential native chemical ligation, Bioorg. Med. Chem. Lett. 19 (2009) 6268-6271.
-
[13]
[13] D. Li, D.L. Elbert, Unprotected peptides as building blocks for branched peptides and peptide dendrimers, J. Pept. Res. 60 (2002) 300-303.
-
[14]
[14] J.A. Camarero, A.R. Mitchell, Synthesis of proteins by native chemical ligation using Fmoc-based chemistry, Protein Pept. Lett. 12 (2005) 723-728.
-
[15]
[15] B.L. Nilsson, M.B. Soellner, R.T. Raines, Chemical synthesis of proteins, Annu. Rev. Biophys. Biomol. Struct. 34 (2005) 91-118.
-
[16]
[16] Q.Q. He, G.M. Fang, L. Liu, Design of thiol-containing amino acids for native chemical ligation at non-cys sites, Chin. Chem. Lett. 24 (2013) 265-269.
-
[17]
[17] P. Wang, X. Li, J. Zhu, et al., Encouraging progress in the omega-aspartylation of complex oligosaccharides as a general route to beta-N-linked glycopolypeptides, J. Am. Chem. Soc. 133 (2011) 1597-1602.
-
[18]
[18] S.T. Cohen-Anisfeld, P.T. Lansbury, A practical, convergent method for glycopeptide synthesis, J. Am. Chem. Soc. 115 (1993) 10531-10537.
-
[19]
[19] J.S. Zheng, S. Tang, Y.C. Huang, L. Liu, Development of new thioester equivalents for protein chemical synthesis, Acc. Chem. Res. 46 (2013) 2475-2484.
-
[20]
[20] G.M. Fang, Y.M. Li, F. Shen, et al., Protein chemical synthesis by ligation of peptide hydrazides, Angew. Chem. Int. Ed. Engl. 50 (2011) 7645-7649.
-
[21]
[21] J.S. Zheng, S. Tang, Y.K. Qi, Z.P. Wang, L. Liu, Chemical synthesis of proteins using peptide hydrazides as thioester surrogates, Nat. Protocols 8 (2013) 2483-2495.
-
[22]
[22] N. Yamamoto, A. Tkayanagi, A. Yoshino, T. Sakakibara, Y. Kajihara, An approach for a synthesis of asparagine-linked sialylglycopeptides having intact and homogeneous complex-type undecadisialyloligosaccharides, Chem. Eur. J. 13 (2007) 613-625.
-
[23]
[23] H.S. Cho, K. Mason, K.X. Ramyar, et al., Structure of the extracellular of HER2 alone and in complex with the Herceptin Fab, Nature 421 (2003) 756-760.
-
[1]
-
-
-
[1]
Min Fu , Pan He , Sen Zhou , Wenqiang Liu , Bo Ma , Shiying Shang , Yaohao Li , Ruihan Wang , Zhongping Tan . An unexpected stereochemical effect of thio-substituted Asp in native chemical ligation. Chinese Chemical Letters, 2024, 35(8): 109434-. doi: 10.1016/j.cclet.2023.109434
-
[2]
Huiju Cao , Lei Shi . sp1-Hybridized linear and cyclic carbon chain. Chinese Chemical Letters, 2025, 36(4): 110466-. doi: 10.1016/j.cclet.2024.110466
-
[3]
Yao HUANG , Yingshu WU , Zhichun BAO , Yue HUANG , Shangfeng TANG , Ruixue LIU , Yancheng LIU , Hong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359
-
[4]
Weiyu Chen , Zenghui Li , Chenguang Zhao , Lisha Zha , Junfeng Shi , Dan Yuan . Enzyme-modulate conformational changes in amphiphile peptide for selectively cell delivery. Chinese Chemical Letters, 2024, 35(12): 109628-. doi: 10.1016/j.cclet.2024.109628
-
[5]
Xiaofang Luo , Ye Wu , Xiaokun Zhang , Min Tang , Feiye Ju , Zuodong Qin , Gregory J Duns , Wei-Dong Zhang , Jiang-Jiang Qin , Xin Luan . Peptide-based strategies for overcoming multidrug-resistance in cancer therapy. Chinese Chemical Letters, 2025, 36(1): 109724-. doi: 10.1016/j.cclet.2024.109724
-
[6]
Yi Liu , Peng Lei , Yang Feng , Shiwei Fu , Xiaoqing Liu , Siqi Zhang , Bin Tu , Chen Chen , Yifan Li , Lei Wang , Qing-Dao Zeng . Topologically engineering of π-conjugated macrocycles: Tunable emission and photochemical reaction toward multi-cyclic polymers. Chinese Chemical Letters, 2024, 35(10): 109571-. doi: 10.1016/j.cclet.2024.109571
-
[7]
Junxin Li , Chao Chen , Yuzhen Dong , Jian Lv , Jun-Mei Peng , Yuan-Ye Jiang , Daoshan Yang . Ligand-promoted reductive coupling between aryl iodides and cyclic sulfonium salts by nickel catalysis. Chinese Chemical Letters, 2024, 35(11): 109732-. doi: 10.1016/j.cclet.2024.109732
-
[8]
Zhili Li , Qijun Wo , Dongdong Huang , Dezhong Zhou , Lei Guo , Yeqing Mao . Improving gene transfection efficiency of highly branched poly(β-amino ester)s through the in-situ conversion of inactive terminal groups. Chinese Chemical Letters, 2024, 35(8): 109737-. doi: 10.1016/j.cclet.2024.109737
-
[9]
Rui Wang , He Qi , Haijiao Zheng , Qiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215
-
[10]
Cheng-Yan Wu , Yi-Nan Gao , Zi-Han Zhang , Rui Liu , Quan Tang , Zhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649
-
[11]
Shulei Hu , Yu Zhang , Xiong Xie , Luhan Li , Kaixian Chen , Hong Liu , Jiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408
-
[12]
Fei Yin , Erli Yang , Xue Ge , Qian Sun , Fan Mo , Guoqiu Wu , Yanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753
-
[13]
Xinyu Yu , Fei Wu , Xianglang Sun , Linna Zhu , Baoyu Xia , Zhong'an Li . Low-cost dopant-free fluoranthene-based branched hole transporting materials for efficient and stable n-i-p perovskite solar cells. Chinese Chemical Letters, 2024, 35(10): 109821-. doi: 10.1016/j.cclet.2024.109821
-
[14]
Jianhui Yin , Wenjing Huang , Changyong Guo , Chao Liu , Fei Gao , Honggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244
-
[15]
Chuanfeng Fan , Jian Gao , Yingkai Gao , Xintong Yang , Gaoning Li , Xiaochun Wang , Fei Li , Jin Zhou , Haifeng Yu , Yi Huang , Jin Chen , Yingying Shan , Li Chen . A non-peptide-based chymotrypsin-targeted long-wavelength emission fluorescent probe with large Stokes shift and its application in bioimaging. Chinese Chemical Letters, 2024, 35(10): 109838-. doi: 10.1016/j.cclet.2024.109838
-
[16]
Xiaohui Fu , Yanping Zhang , Juan Liao , Zhen-Hua Wang , Yong You , Jian-Qiang Zhao , Mingqiang Zhou , Wei-Cheng Yuan . Palladium-catalyzed enantioselective decarboxylation of vinyl cyclic carbamates: Generation of amide-based aza-1,3-dipoles and application to asymmetric 1,3-dipolar cycloaddition. Chinese Chemical Letters, 2024, 35(12): 109688-. doi: 10.1016/j.cclet.2024.109688
-
[17]
Qihang Wu , Hui Wen , Wenhai Lin , Tingting Sun , Zhigang Xie . Alkyl chain engineering of boron dipyrromethenes for efficient photodynamic antibacterial treatment. Chinese Chemical Letters, 2024, 35(12): 109692-. doi: 10.1016/j.cclet.2024.109692
-
[18]
Yu ZHANG , Fangfang ZHAO , Cong PAN , Peng WANG , Liangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412
-
[19]
Supphachok Chanmungkalakul , Syed Ali Abbas Abedi , Federico J. Hernández , Jianwei Xu , Xiaogang Liu . The dark side of cyclooctatetraene (COT): Photophysics in the singlet states of “self-healing” dyes. Chinese Chemical Letters, 2024, 35(8): 109227-. doi: 10.1016/j.cclet.2023.109227
-
[20]
Yifei Zhang , Yuncong Xue , Laiwei Gao , Rui Liao , Feng Wang , Fei Wang . Merging non-covalent and covalent crosslinking: En route to single chain nanoparticles. Chinese Chemical Letters, 2024, 35(6): 109217-. doi: 10.1016/j.cclet.2023.109217
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(760)
- HTML views(18)