Citation: Jian Lu, Xiao-Bo Tian, Wei Huang. A new strategy for synthesis of branched cyclic peptide by Asn side-chain hydrazide ligation[J]. Chinese Chemical Letters, ;2015, 26(8): 946-950. doi: 10.1016/j.cclet.2015.05.016 shu

A new strategy for synthesis of branched cyclic peptide by Asn side-chain hydrazide ligation

  • Corresponding author: Wei Huang, 
  • Received Date: 30 March 2015
    Available Online: 14 April 2015

    Fund Project: This work was supported by the National Natural Science Foundation of China (NNSFC, No. 21372238) (NNSFC, No. 21372238)

  • Here, we report a new strategy for rapid synthesis of branched peptide by side-chain hydrazide ligation at Asn. The hydrazide was converted to thioester at Asn side chain by NaNO2 and thiol reagent, and sequential ligation with an N-terminus Cys-peptide efficiently afforded the branched peptide. A branched cyclic peptide was successfully synthesized by side-chain ligation with a two-Cys-peptide and formation of a disulfide bond. This approach provides a new way for expeditious synthesis of branched peptides and facilitates the design of neopeptides as functional bio-mimics.
  • 加载中
    1. [1]

      [1] G.J. Gorse, M.C. Keefer, R.B. Belshe, et al., A dose-ranging study of a prototype synthetic HIV-1MN V3 branched peptide vaccine. The National Institute of Allergy and Infectious Diseases AIDS Vaccine Evaluation Group, J. Infect. Dis. 173 (1996) 330-339.

    2. [2]

      [2] N. Yahi, J.M. Sabatier, S. Baghdiguian, F. Gonzalez-Scarano, J. Fantini, Synthetic multimeric peptides derived from the principal neutralization domain (V3 loop) of human immunodeficiency virus type 1 (HIV-1) gp120 bind to galactosylceramide and block HIV-1 infection in a human CD4-negative mucosal epithelial cell line, J. Virol. 69 (1995) 320-325.

    3. [3]

      [3] A. Benjouad, F. Chapuis, E. Fenouillet, J.C. Gluckman, Multibranched peptide constructs derived from the V3 loop of envelope glycoprotein gp120 inhibit human immunodeficiency virus type 1 infection through interaction with CD4, J. Virol. 206 (1995) 457-464.

    4. [4]

      [4] J.M. Sheridan, G.M. Hayes, B.M. Austen, Solid-phase synthesis and cyclization of a large branched peptide from IgG Fc with affinity for Fc γRI, J. Pept. Sci. 5 (1999) 555-562.

    5. [5]

      [5] A. Stavrakoudis, S. Makropoulou, V. Tsikaris, et al., Computational screening of branched cyclic peptide motifs as potential enzyme mimetics, J. Pept. Sci. 9 (2003) 145-155.

    6. [6]

      [6] D. Li, D.L. Elbert, The kinetics of the removal of the N-methyltrityl (Mtt) group during the synthesis of branched peptides, J. Pept. Res. 60 (2002) 300-303.

    7. [7]

      [7] S.A. Kates, S.B. Daniels, F. Albericio, Automated allyl cleavage for continuousflow synthesis of cyclic and branched peptides, Anal. Biochem. 212 (1993) 303-310.

    8. [8]

      [8] D. Delforge, M. Art, B. Gillon, et al., Automated solid-phase synthesis of cyclic peptides bearing a side-chain tail designed for subsequent chemical grafting, Anal. Biochem. 242 (1996) 180-186.

    9. [9]

      [9] G.B. Bloomberg, D. Askin, A.R. Gargaro, M.J.A. Tanner, Synthesis of a branched cyclic peptide using a strategy employing Fmoc chemistry and two additional orthogonal protecting groups, Tetrahedron Lett. 34 (1993) 4709-4712.

    10. [10]

      [10] S.W. Millward, H.D. Agnew, B. Lai, et al., In situ click chemistry: from small molecule discovery to synthetic antibodies, Integr. Biol. (Camb.) 5 (2013) 87-95.

    11. [11]

      [11] Y.J. Pu, H. Yuan, M. Yang, B. He, Z.W. Gu, Synthesis of peptide dendrimers with polyhedral oligomeric silsesquioxane cores via click chemistry, Chin. Chem. Lett. 24 (2013) 917-920.

    12. [12]

      [12] K.K. Pasunooti, R. Yang, S. Vedachalam, et al., Synthesis of 4-mercapto-L-lysine derivatives: potential building blocks for sequential native chemical ligation, Bioorg. Med. Chem. Lett. 19 (2009) 6268-6271.

    13. [13]

      [13] D. Li, D.L. Elbert, Unprotected peptides as building blocks for branched peptides and peptide dendrimers, J. Pept. Res. 60 (2002) 300-303.

    14. [14]

      [14] J.A. Camarero, A.R. Mitchell, Synthesis of proteins by native chemical ligation using Fmoc-based chemistry, Protein Pept. Lett. 12 (2005) 723-728.

    15. [15]

      [15] B.L. Nilsson, M.B. Soellner, R.T. Raines, Chemical synthesis of proteins, Annu. Rev. Biophys. Biomol. Struct. 34 (2005) 91-118.

    16. [16]

      [16] Q.Q. He, G.M. Fang, L. Liu, Design of thiol-containing amino acids for native chemical ligation at non-cys sites, Chin. Chem. Lett. 24 (2013) 265-269.

    17. [17]

      [17] P. Wang, X. Li, J. Zhu, et al., Encouraging progress in the omega-aspartylation of complex oligosaccharides as a general route to beta-N-linked glycopolypeptides, J. Am. Chem. Soc. 133 (2011) 1597-1602.

    18. [18]

      [18] S.T. Cohen-Anisfeld, P.T. Lansbury, A practical, convergent method for glycopeptide synthesis, J. Am. Chem. Soc. 115 (1993) 10531-10537.

    19. [19]

      [19] J.S. Zheng, S. Tang, Y.C. Huang, L. Liu, Development of new thioester equivalents for protein chemical synthesis, Acc. Chem. Res. 46 (2013) 2475-2484.

    20. [20]

      [20] G.M. Fang, Y.M. Li, F. Shen, et al., Protein chemical synthesis by ligation of peptide hydrazides, Angew. Chem. Int. Ed. Engl. 50 (2011) 7645-7649.

    21. [21]

      [21] J.S. Zheng, S. Tang, Y.K. Qi, Z.P. Wang, L. Liu, Chemical synthesis of proteins using peptide hydrazides as thioester surrogates, Nat. Protocols 8 (2013) 2483-2495.

    22. [22]

      [22] N. Yamamoto, A. Tkayanagi, A. Yoshino, T. Sakakibara, Y. Kajihara, An approach for a synthesis of asparagine-linked sialylglycopeptides having intact and homogeneous complex-type undecadisialyloligosaccharides, Chem. Eur. J. 13 (2007) 613-625.

    23. [23]

      [23] H.S. Cho, K. Mason, K.X. Ramyar, et al., Structure of the extracellular of HER2 alone and in complex with the Herceptin Fab, Nature 421 (2003) 756-760.

  • 加载中
    1. [1]

      Min FuPan HeSen ZhouWenqiang LiuBo MaShiying ShangYaohao LiRuihan WangZhongping Tan . An unexpected stereochemical effect of thio-substituted Asp in native chemical ligation. Chinese Chemical Letters, 2024, 35(8): 109434-. doi: 10.1016/j.cclet.2023.109434

    2. [2]

      Huiju CaoLei Shi . sp1-Hybridized linear and cyclic carbon chain. Chinese Chemical Letters, 2025, 36(4): 110466-. doi: 10.1016/j.cclet.2024.110466

    3. [3]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    4. [4]

      Weiyu ChenZenghui LiChenguang ZhaoLisha ZhaJunfeng ShiDan Yuan . Enzyme-modulate conformational changes in amphiphile peptide for selectively cell delivery. Chinese Chemical Letters, 2024, 35(12): 109628-. doi: 10.1016/j.cclet.2024.109628

    5. [5]

      Xiaofang LuoYe WuXiaokun ZhangMin TangFeiye JuZuodong QinGregory J DunsWei-Dong ZhangJiang-Jiang QinXin Luan . Peptide-based strategies for overcoming multidrug-resistance in cancer therapy. Chinese Chemical Letters, 2025, 36(1): 109724-. doi: 10.1016/j.cclet.2024.109724

    6. [6]

      Yi LiuPeng LeiYang FengShiwei FuXiaoqing LiuSiqi ZhangBin TuChen ChenYifan LiLei WangQing-Dao Zeng . Topologically engineering of π-conjugated macrocycles: Tunable emission and photochemical reaction toward multi-cyclic polymers. Chinese Chemical Letters, 2024, 35(10): 109571-. doi: 10.1016/j.cclet.2024.109571

    7. [7]

      Junxin LiChao ChenYuzhen DongJian LvJun-Mei PengYuan-Ye JiangDaoshan Yang . Ligand-promoted reductive coupling between aryl iodides and cyclic sulfonium salts by nickel catalysis. Chinese Chemical Letters, 2024, 35(11): 109732-. doi: 10.1016/j.cclet.2024.109732

    8. [8]

      Zhili LiQijun WoDongdong HuangDezhong ZhouLei GuoYeqing Mao . Improving gene transfection efficiency of highly branched poly(β-amino ester)s through the in-situ conversion of inactive terminal groups. Chinese Chemical Letters, 2024, 35(8): 109737-. doi: 10.1016/j.cclet.2024.109737

    9. [9]

      Rui WangHe QiHaijiao ZhengQiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215

    10. [10]

      Cheng-Yan WuYi-Nan GaoZi-Han ZhangRui LiuQuan TangZhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649

    11. [11]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

    12. [12]

      Fei YinErli YangXue GeQian SunFan MoGuoqiu WuYanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753

    13. [13]

      Xinyu YuFei WuXianglang SunLinna ZhuBaoyu XiaZhong'an Li . Low-cost dopant-free fluoranthene-based branched hole transporting materials for efficient and stable n-i-p perovskite solar cells. Chinese Chemical Letters, 2024, 35(10): 109821-. doi: 10.1016/j.cclet.2024.109821

    14. [14]

      Jianhui YinWenjing HuangChangyong GuoChao LiuFei GaoHonggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244

    15. [15]

      Chuanfeng FanJian GaoYingkai GaoXintong YangGaoning LiXiaochun WangFei LiJin ZhouHaifeng YuYi HuangJin ChenYingying ShanLi Chen . A non-peptide-based chymotrypsin-targeted long-wavelength emission fluorescent probe with large Stokes shift and its application in bioimaging. Chinese Chemical Letters, 2024, 35(10): 109838-. doi: 10.1016/j.cclet.2024.109838

    16. [16]

      Xiaohui FuYanping ZhangJuan LiaoZhen-Hua WangYong YouJian-Qiang ZhaoMingqiang ZhouWei-Cheng Yuan . Palladium-catalyzed enantioselective decarboxylation of vinyl cyclic carbamates: Generation of amide-based aza-1,3-dipoles and application to asymmetric 1,3-dipolar cycloaddition. Chinese Chemical Letters, 2024, 35(12): 109688-. doi: 10.1016/j.cclet.2024.109688

    17. [17]

      Qihang WuHui WenWenhai LinTingting SunZhigang Xie . Alkyl chain engineering of boron dipyrromethenes for efficient photodynamic antibacterial treatment. Chinese Chemical Letters, 2024, 35(12): 109692-. doi: 10.1016/j.cclet.2024.109692

    18. [18]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    19. [19]

      Supphachok ChanmungkalakulSyed Ali Abbas AbediFederico J. HernándezJianwei XuXiaogang Liu . The dark side of cyclooctatetraene (COT): Photophysics in the singlet states of “self-healing” dyes. Chinese Chemical Letters, 2024, 35(8): 109227-. doi: 10.1016/j.cclet.2023.109227

    20. [20]

      Yifei ZhangYuncong XueLaiwei GaoRui LiaoFeng WangFei Wang . Merging non-covalent and covalent crosslinking: En route to single chain nanoparticles. Chinese Chemical Letters, 2024, 35(6): 109217-. doi: 10.1016/j.cclet.2023.109217

Metrics
  • PDF Downloads(0)
  • Abstract views(760)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return