Citation:
Chao Xiao, Wei-Ye Zhao, Da-Yang Zhou, Yan Huang, Ye Tao, Wan-Hua Wua, Cheng Yang. Recent advance of photochromic diarylethenes-containing supramolecular systems[J]. Chinese Chemical Letters,
;2015, 26(7): 817-824.
doi:
10.1016/j.cclet.2015.05.013
-
Photochromic diarylethenes were deemed to be one of themost promising molecular building blocks for photoresponsive materials. This review gives a brief summary to the recent progress of studies of diarylethenes in supramolecular systems, focusing on their applications in biological systems, photoresponsive mechanical materials and photoresponsive chemosensors.
-
-
-
[1]
[1] J.M. Lehn, Supramolecular Chemistry: Concepts and Perspectives, VCH, Weinheim, 1995.
-
[2]
[2] G. Fukuhara, H. Umehara, S. Higashino, et al., Supramolecular photocyclodimerization of 2-hydroxyanthracene with a chiral hydrogen-bonding template, cyclodextrin and serum albumin, Photochem. Photobiol. Sci. 13 (2014) 162–171.
-
[3]
[3] C. Yang, Recent progress in supramolecular chiral photochemistry, Chin. Chem. Lett. 24 (2013) 437–441.
-
[4]
[4] S. Yagai, M. Usui, T. Seki, et al., Supramolecularly engineered perylene bisimide assemblies exhibiting thermal transition from columnar to multilamellar structures, J. Am. Chem. Soc. 134 (2012) 7983–7994.
-
[5]
[5] X.Y. Hu, Y. Chen, Y. Liu, Redox-responsive supramolecular nanoparticles based on amphiphilic sulfonatocalixarene and selenocystamine dihydrochloride, Chin. Chem. Lett. 26 (2015) 862–866.
-
[6]
[6] Y.B. Lim, K.S. Moon, M. Lee, Recent advances in functional supramolecular nanostructures assembled from bioactive building blocks, Chem. Soc. Rev. 38 (2009) 925–934.
-
[7]
[7] T. Hirose, K. Matsuda, Photoswitching of chiral supramolecular environments and photoinduced lower critical solution temperature transitions in aqueous media following a supramolecular approach, Org. Biomol. Chem. 11 (2013) 873–880.
-
[8]
[8] H.J. Kim, T. Kim, M. Lee, Responsive nanostructures from aqueous assembly of rigid-flexible block molecules, Acc. Chem. Res. 44 (2011) 72–82.
-
[9]
[9] L. Qin, P.F. Duan, M.H. Liu, Interfacial assembly and host–guest interaction of anthracene-conjugated L-glutamate dendron with cyclodextrin at the air/water interface, Chin. Chem. Lett. 25 (2014) 487–490.
-
[10]
[10] E. Ohta, H. Sato, S. Ando, et al., Redox-responsive molecular helices with highly condensed pi-clouds, Nat. Chem. 3 (2011) 68–73.
-
[11]
[11] X. Zhang, S. Rehm, M.M. Safont-Sempere, F. Wurthner, Vesicular perylene dye nanocapsules as supramolecular fluorescent pH sensor systems, Nat. Chem. 1 (2009) 623–629.
-
[12]
[12] Y.X. Sun, W.Y. Sun, Influence of temperature on metal–organic frameworks, Chin. Chem. Lett. 25 (2014) 823–828.
-
[13]
[13] H. Dü rr, H. Bouas-Laurent, Photochromism: Molecules and Systems, Gulf Professional Publishing, 2003.
-
[14]
[14] M. Irie, Diarylethenes for memories and switches, Chem. Rev. 100 (2000) 1685– 1716.
-
[15]
[15] W. Szymanski, J.M. Beierle, H.A. Kistemaker, W.A. Velema, B.L. Feringa, Reversible photocontrol of biological systems by the incorporation of molecular photoswitches, Chem. Rev. 113 (2013) 6114–6178.
-
[16]
[16] L.X. Yu, Y. Liu, S.C. Chen, Y. Guan, Y.Z. Wang, Reversible photoswitching aggregation and dissolution of spiropyran-functionalized copolymer and light-responsive FRET process, Chin. Chem. Lett. 25 (2014) 389–396.
-
[17]
[17] T.T. Cao, X.Y. Yao, J. Zhang, Q.C. Wang, X. Ma, A cucurbit[8]uril recognized rigid supramolecular polymer with photo-stimulated responsiveness, Chin. Chem. Lett. 26 (2015) 867–871.
-
[18]
[18] W. Zhu, Y. Yang, R. Mé tivier, et al., Unprecedented stability of a photochromic bisthienylethene based on benzobisthiadiazole as an ethene bridge, Angew. Chem. In. Ed. 50 (2011) 10986–10990.
-
[19]
[19] S. Nakamura, M. Irie, Thermally irreversible photochromic systems. A theoretical study, J. Org. Chem. 53 (1988) 6136–6138.
-
[20]
[20] F. Xia, L. Feng, S. Wang, et al., Dual-responsive surfaces that switch between superhydrophilicity and superhydrophobicity, Adv. Mater. 18 (2006) 432–436.
-
[21]
[21] D. Wu, L. Zhi, G.J. Bodwell, et al., Self-assembly of positively charged discotic PAHs: from nanofibers to nanotubes, Angew. Chem. Int. Ed. 46 (2007) 5417–5420.
-
[22]
[22] T. Hirose1,M. Irie, K. Matsuda, Self-assembly of photochromic diarylethenes with amphiphilic side chains: core-chain ratio dependence on supramolecular structures, Chem. Asian J. 4 (2009) 58–66.
-
[23]
[23] S. Xiao, Y. Zou, J. Wu, et al., Hydrogen bonding assisted switchable fluorescence in self-assembled complexes containing diarylethene: controllable fluorescent emission in the solid state, J. Mater. Chem. 17 (2007) 2483–2489.
-
[24]
[24] S. Yagai, K. Iwai, T. Karatsu, A. Kitamura, Photoswitchable exciton coupling in merocyanine-diarylethene multi-chromophore hydrogen-bonded complexes, Angew. Chem. Int. Ed. 51 (2012) 9679–9683.
-
[25]
[25] X. Cao, J. Zhou, Y. Zou, et al., Fluorescence and morphology modulation in a photochromic diarylethene self-assembly system, Langmuir 27 (2011) 5090–5097.
-
[26]
[26] S. Yagai, K. Ohta, M. Gushiken, et al., Photoreversible supramolecular polymerisation and hierarchical organization of hydrogen-bonded supramolecular copolymers composed of diarylethenes and oligothiophenes, Chem. Eur. J. 18 (2012) 2244–2253.
-
[27]
[27] D.T. McQuade, A.E. Pullen, T.M. Swager, Conjugated polymer-based chemical sensors, Chem. Rev. 100 (2000) 2537–2574.
-
[28]
[28] W. Wu, J. Zhao, H. Guo, et al., Long-lived room-temperature near-IR phosphorescence of BODIPY in a visible-light-harvesting N^C^N Pt(II)-acetylide complex with a directly metalated BODIPY chromophore, Chem. Eur. J. 18 (2012) 1961–1968.
-
[29]
[29] S. Yagai, K. Ishiwatari, X. Lin, et al., Rational design of photoresponsive supramolecular assemblies based on diarylethene, Chem. Eur. J. 19 (2013) 6971– 6975.
-
[30]
[30] X. Zhou, Y. Duan, S. Yan, et al., Optical modulation of supramolecular assembly of amphiphilic photochromic diarylethene: from nanofiber to nanosphere, Chem. Commun. 47 (2011) 6876–6878.
-
[31]
[31] S. Yagai, K. Iwai, M. Yamauchi, et al., Photocontrol over self-assembled nanostructures of π–π stacked dyes supported by the parallel conformer of diarylethene, Angew. Chem. Int. Ed. 53 (2014) 2602–2606.
-
[32]
[32] A. Falciatore, C. Bowler, The evolution and function of blue and red light photoreceptors, Curr. Top. Dev. Biol. 68 (2005) 317–350.
-
[33]
[33] E. Schäfer, C. Bowler, Phytochrome-mediated photoperception and signal transduction in higher plants, EMBO Rep. 3 (2002) 1042–1048.
-
[34]
[34] O. Babii, S. Afonin, M. Berditsch, et al., Controlling biological activity with light: diarylethene-containing cyclic peptidomimetics, Angew. Chem. Int. Ed. 53 (2014) 3392–3395.
-
[35]
[35] D. Vomasta, C. Hogner, N.R. Branda, B. Konig, Regulation of human carbonic anhydrase I (hCAI) activity by using a photochromic inhibitor, Angew. Chem. Int. Ed. 47 (2008) 7644–7647.
-
[36]
[36] A.A. Beharry, G.A. Woolley, Azobenzene photoswitches for biomolecules, Chem. Soc. Rev. 40 (2011) 4422–4437.
-
[37]
[37] S. Ogasawara, M. Maeda, Reversible photoswitching of a G-quadruplex, Angew. Chem. Int. Ed. 48 (2009) 6671–6674.
-
[38]
[38] A. Mammana, G.T. Carroll, J. Areephong, B.L. Feringa, A chiroptical photoswitchable DNA complex, J. Phys. Chem. B 115 (2011) 11581–11587.
-
[39]
[39] H. Cahova, A. Jaschke, Nucleoside-based diarylethene photoswitches and their facile incorporation into photoswitchable DNA, Angew. Chem. Int. Ed. 52 (2013) 3186–3190.
-
[40]
[40] Y. Liu, A.H. Flood, P.A. Bonvallet, et al., Linear artificial molecular muscles, J. Am. Chem. Soc. 127 (2005) 9745–9759.
-
[41]
[41] L. Fang, M. Hmadeh, J. Wu, et al., Acid–base actuation of [c2]daisy chains, J. Am. Chem. Soc. 131 (2009) 7126–7134.
-
[42]
[42] G. Paul, Clark, W. Michael, R.H. Day, Grubbs, Switching and extension of a [c2]daisy-chain dimer polymer, J. Am. Chem. Soc. 131 (2009) 13631–13633.
-
[43]
[43] M. Morimoto, M. Irie, A diarylethene cocrystal that converts light into mechanical work, J. Am. Chem. Soc. 132 (2010) 14172–14178.
-
[44]
[44] D. Kitagawa, H. Nishi, S. Kobatake, Photoinduced twisting of a photochromic diarylethene crystal, Angew. Chem. Int. Ed. 52 (2013) 9320–9322.
-
[45]
[45] Y. Li, M. Wang, H. Wang, A. Urbas, Q. Li, Rationally designed axially chiral diarylethene switches with high helical twisting power, Chem. Eur. J. 20 (2014) 16286–16292.
-
[46]
[46] L. Hou, X. Zhang, T.C. Pijper, W.R. Browne, B.L. Feringa, Reversible photochemical control of singlet oxygen generation using diarylethene photochromic switches, J. Am. Chem. Soc. 136 (2014) 910–913.
-
[47]
[47] J.F. Lovell, T.W.B. Liu, J. Chen, G. Zheng, Activatable photosensitizers for imaging and therapy, Chem. Rev. 110 (2010) 2839–2857.
-
[48]
[48] X. Cui, J. Zhao, Y. Zhou, J. Ma, Y. Zhao, Reversible photoswitching of triplet–triplet annihilation upconversion using dithienylethene photochromic switches, J. Am. Chem. Soc. 136 (2014) 9256–9259.
-
[49]
[49] J. Zhao, W. Wu, J. Sun, S. Guo, Triplet photosensitizers: from molecular design to applications, Chem. Soc. Rev. 42 (2013) 5323–5351.
-
[1]
-
-
-
[1]
Yan Wang , Si-Meng Zhai , Peng Luo , Xi-Yan Dong , Jia-Yin Wang , Zhen Han , Shuang-Quan Zang . Vapor- and temperature-triggered reversible optical switching for multi-response Cu8 cluster supercrystals. Chinese Chemical Letters, 2024, 35(11): 109493-. doi: 10.1016/j.cclet.2024.109493
-
[2]
Rui Wang , Yang Liang , Julius Rebek Jr. , Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228
-
[3]
Chao Zhang , Ai-Feng Liu , Shihui Li , Fang-Yuan Chen , Jun-Tao Zhang , Fang-Xing Zeng , Hui-Chuan Feng , Ping Wang , Wen-Chao Geng , Chuan-Rui Ma , Dong-Sheng Guo . A supramolecular formulation of icariin@sulfonatoazocalixarene for hypoxia-targeted osteoarthritis therapy. Chinese Chemical Letters, 2025, 36(1): 109752-. doi: 10.1016/j.cclet.2024.109752
-
[4]
Jie Yang , Xin-Yue Lou , Dihua Dai , Jingwei Shi , Ying-Wei Yang . Desymmetrized pillar[8]arenes: High-yield synthesis, functionalization, and host-guest chemistry. Chinese Chemical Letters, 2025, 36(1): 109818-. doi: 10.1016/j.cclet.2024.109818
-
[5]
Zhenzhu Wang , Chenglong Liu , Yunpeng Ge , Wencan Li , Chenyang Zhang , Bing Yang , Shizhong Mao , Zeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127
-
[6]
Xuanyu Wang , Zhao Gao , Wei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757
-
[7]
Xuying Yu , Jiarong Mi , Yulan Han , Cai Sun , Mingsheng Wang , Guocong Guo . A stable radiochromic semiconductive viologen-based metal–organic framework for dual-mode direct X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109233-. doi: 10.1016/j.cclet.2023.109233
-
[8]
Yanting Yang , Guorong Wang , Kangjing Li , Wen Yang , Jing Zhang , Jian Zhang , Shili Li , Xianming Zhang . Tuning up of chromism, luminescence in cadmium-viologen complexes through polymorphism strategy: Inkless erasable printing application. Chinese Chemical Letters, 2025, 36(1): 110123-. doi: 10.1016/j.cclet.2024.110123
-
[9]
Kang Wei , Jiayu Li , Wen Zhang , Bing Yuan , Ming-De Li , Pingwu Du . A strained π-extended [10]cycloparaphenylene carbon nanoring. Chinese Chemical Letters, 2024, 35(5): 109055-. doi: 10.1016/j.cclet.2023.109055
-
[10]
Junying Zhang , Ruochen Li , Haihua Wang , Wenbing Kang , Xing-Dong Xu . Photo-induced tunable luminescence from an aggregated amphiphilic ethylene-pyrene derivative in aqueous media. Chinese Chemical Letters, 2024, 35(6): 109216-. doi: 10.1016/j.cclet.2023.109216
-
[11]
Zhimin Sun , Xin-Hui Guo , Yue Zhao , Qing-Yu Meng , Li-Juan Xing , He-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162
-
[12]
Zixi Zou , Jingyuan Wang , Yian Sun , Qian Wang , Da-Hui Qu . Controlling molecular assembly on time scale: Time-dependent multicolor fluorescence for information encryption. Chinese Chemical Letters, 2024, 35(7): 108972-. doi: 10.1016/j.cclet.2023.108972
-
[13]
Cheng-Da Zhao , Huan Yao , Shi-Yao Li , Fangfang Du , Li-Li Wang , Liu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879
-
[14]
Zhengzhong Zhu , Shaojun Hu , Zhi Liu , Lipeng Zhou , Chongbin Tian , Qingfu Sun . A cationic radical lanthanide organic tetrahedron with remarkable coordination enhanced radical stability. Chinese Chemical Letters, 2025, 36(2): 109641-. doi: 10.1016/j.cclet.2024.109641
-
[15]
Jingyu Chen , Sha Wu , Yuhao Wang , Jiong Zhou . Near-perfect separation of alicyclic ketones and alicyclic alcohols by nonporous adaptive crystals of perethylated pillar[5]arene and pillar[6]arene. Chinese Chemical Letters, 2025, 36(4): 110102-. doi: 10.1016/j.cclet.2024.110102
-
[16]
Rui Gao , Ying Zhou , Yifan Hu , Siyuan Chen , Shouhong Xu , Qianfu Luo , Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050
-
[17]
Zishuo Yi , Peng Liu , Yan Xu . Fluorescent “Chameleon”: A Popular Science Experiment Based on Dynamic Luminescence. University Chemistry, 2024, 39(9): 304-310. doi: 10.12461/PKU.DXHX202311079
-
[18]
Yihao Zhao , Jitian Rao , Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050
-
[19]
Ling Zhang , Jing Kang . Turn Waste into Valuable: Preparation of High-Strength Water-Based Adhesives from Polymethylmethacrylate Wastes: a Comprehensive Chemical Experiments. University Chemistry, 2024, 39(2): 221-226. doi: 10.3866/PKU.DXHX202306075
-
[20]
Jiarui Wu , Gengxin Wu , Yan Wang , Yingwei Yang . Crystal Engineering Based on Leaning Towerarenes. University Chemistry, 2024, 39(3): 58-62. doi: 10.3866/PKU.DXHX202304014
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(630)
- HTML views(6)