Citation: Chao Xiao, Wei-Ye Zhao, Da-Yang Zhou, Yan Huang, Ye Tao, Wan-Hua Wua, Cheng Yang. Recent advance of photochromic diarylethenes-containing supramolecular systems[J]. Chinese Chemical Letters, ;2015, 26(7): 817-824. doi: 10.1016/j.cclet.2015.05.013 shu

Recent advance of photochromic diarylethenes-containing supramolecular systems

  • Corresponding author: Wan-Hua Wua,  Cheng Yang, 
  • Received Date: 19 March 2015
    Available Online: 10 April 2015

    Fund Project: and Comprehensive Training Platform of Specialized Laboratory, College of Chemistry, Sichuan University for financial support. (No. sklpme2014-2-06)

  • Photochromic diarylethenes were deemed to be one of themost promising molecular building blocks for photoresponsive materials. This review gives a brief summary to the recent progress of studies of diarylethenes in supramolecular systems, focusing on their applications in biological systems, photoresponsive mechanical materials and photoresponsive chemosensors.
  • 加载中
    1. [1]

      [1] J.M. Lehn, Supramolecular Chemistry: Concepts and Perspectives, VCH, Weinheim, 1995.

    2. [2]

      [2] G. Fukuhara, H. Umehara, S. Higashino, et al., Supramolecular photocyclodimerization of 2-hydroxyanthracene with a chiral hydrogen-bonding template, cyclodextrin and serum albumin, Photochem. Photobiol. Sci. 13 (2014) 162–171.

    3. [3]

      [3] C. Yang, Recent progress in supramolecular chiral photochemistry, Chin. Chem. Lett. 24 (2013) 437–441.

    4. [4]

      [4] S. Yagai, M. Usui, T. Seki, et al., Supramolecularly engineered perylene bisimide assemblies exhibiting thermal transition from columnar to multilamellar structures, J. Am. Chem. Soc. 134 (2012) 7983–7994.

    5. [5]

      [5] X.Y. Hu, Y. Chen, Y. Liu, Redox-responsive supramolecular nanoparticles based on amphiphilic sulfonatocalixarene and selenocystamine dihydrochloride, Chin. Chem. Lett. 26 (2015) 862–866.

    6. [6]

      [6] Y.B. Lim, K.S. Moon, M. Lee, Recent advances in functional supramolecular nanostructures assembled from bioactive building blocks, Chem. Soc. Rev. 38 (2009) 925–934.

    7. [7]

      [7] T. Hirose, K. Matsuda, Photoswitching of chiral supramolecular environments and photoinduced lower critical solution temperature transitions in aqueous media following a supramolecular approach, Org. Biomol. Chem. 11 (2013) 873–880.

    8. [8]

      [8] H.J. Kim, T. Kim, M. Lee, Responsive nanostructures from aqueous assembly of rigid-flexible block molecules, Acc. Chem. Res. 44 (2011) 72–82.

    9. [9]

      [9] L. Qin, P.F. Duan, M.H. Liu, Interfacial assembly and host–guest interaction of anthracene-conjugated L-glutamate dendron with cyclodextrin at the air/water interface, Chin. Chem. Lett. 25 (2014) 487–490.

    10. [10]

      [10] E. Ohta, H. Sato, S. Ando, et al., Redox-responsive molecular helices with highly condensed pi-clouds, Nat. Chem. 3 (2011) 68–73.

    11. [11]

      [11] X. Zhang, S. Rehm, M.M. Safont-Sempere, F. Wurthner, Vesicular perylene dye nanocapsules as supramolecular fluorescent pH sensor systems, Nat. Chem. 1 (2009) 623–629.

    12. [12]

      [12] Y.X. Sun, W.Y. Sun, Influence of temperature on metal–organic frameworks, Chin. Chem. Lett. 25 (2014) 823–828.

    13. [13]

      [13] H. Dü rr, H. Bouas-Laurent, Photochromism: Molecules and Systems, Gulf Professional Publishing, 2003.

    14. [14]

      [14] M. Irie, Diarylethenes for memories and switches, Chem. Rev. 100 (2000) 1685– 1716.

    15. [15]

      [15] W. Szymanski, J.M. Beierle, H.A. Kistemaker, W.A. Velema, B.L. Feringa, Reversible photocontrol of biological systems by the incorporation of molecular photoswitches, Chem. Rev. 113 (2013) 6114–6178.

    16. [16]

      [16] L.X. Yu, Y. Liu, S.C. Chen, Y. Guan, Y.Z. Wang, Reversible photoswitching aggregation and dissolution of spiropyran-functionalized copolymer and light-responsive FRET process, Chin. Chem. Lett. 25 (2014) 389–396.

    17. [17]

      [17] T.T. Cao, X.Y. Yao, J. Zhang, Q.C. Wang, X. Ma, A cucurbit[8]uril recognized rigid supramolecular polymer with photo-stimulated responsiveness, Chin. Chem. Lett. 26 (2015) 867–871.

    18. [18]

      [18] W. Zhu, Y. Yang, R. Mé tivier, et al., Unprecedented stability of a photochromic bisthienylethene based on benzobisthiadiazole as an ethene bridge, Angew. Chem. In. Ed. 50 (2011) 10986–10990.

    19. [19]

      [19] S. Nakamura, M. Irie, Thermally irreversible photochromic systems. A theoretical study, J. Org. Chem. 53 (1988) 6136–6138.

    20. [20]

      [20] F. Xia, L. Feng, S. Wang, et al., Dual-responsive surfaces that switch between superhydrophilicity and superhydrophobicity, Adv. Mater. 18 (2006) 432–436.

    21. [21]

      [21] D. Wu, L. Zhi, G.J. Bodwell, et al., Self-assembly of positively charged discotic PAHs: from nanofibers to nanotubes, Angew. Chem. Int. Ed. 46 (2007) 5417–5420.

    22. [22]

      [22] T. Hirose1,M. Irie, K. Matsuda, Self-assembly of photochromic diarylethenes with amphiphilic side chains: core-chain ratio dependence on supramolecular structures, Chem. Asian J. 4 (2009) 58–66.

    23. [23]

      [23] S. Xiao, Y. Zou, J. Wu, et al., Hydrogen bonding assisted switchable fluorescence in self-assembled complexes containing diarylethene: controllable fluorescent emission in the solid state, J. Mater. Chem. 17 (2007) 2483–2489.

    24. [24]

      [24] S. Yagai, K. Iwai, T. Karatsu, A. Kitamura, Photoswitchable exciton coupling in merocyanine-diarylethene multi-chromophore hydrogen-bonded complexes, Angew. Chem. Int. Ed. 51 (2012) 9679–9683.

    25. [25]

      [25] X. Cao, J. Zhou, Y. Zou, et al., Fluorescence and morphology modulation in a photochromic diarylethene self-assembly system, Langmuir 27 (2011) 5090–5097.

    26. [26]

      [26] S. Yagai, K. Ohta, M. Gushiken, et al., Photoreversible supramolecular polymerisation and hierarchical organization of hydrogen-bonded supramolecular copolymers composed of diarylethenes and oligothiophenes, Chem. Eur. J. 18 (2012) 2244–2253.

    27. [27]

      [27] D.T. McQuade, A.E. Pullen, T.M. Swager, Conjugated polymer-based chemical sensors, Chem. Rev. 100 (2000) 2537–2574.

    28. [28]

      [28] W. Wu, J. Zhao, H. Guo, et al., Long-lived room-temperature near-IR phosphorescence of BODIPY in a visible-light-harvesting N^C^N Pt(II)-acetylide complex with a directly metalated BODIPY chromophore, Chem. Eur. J. 18 (2012) 1961–1968.

    29. [29]

      [29] S. Yagai, K. Ishiwatari, X. Lin, et al., Rational design of photoresponsive supramolecular assemblies based on diarylethene, Chem. Eur. J. 19 (2013) 6971– 6975.

    30. [30]

      [30] X. Zhou, Y. Duan, S. Yan, et al., Optical modulation of supramolecular assembly of amphiphilic photochromic diarylethene: from nanofiber to nanosphere, Chem. Commun. 47 (2011) 6876–6878.

    31. [31]

      [31] S. Yagai, K. Iwai, M. Yamauchi, et al., Photocontrol over self-assembled nanostructures of π–π stacked dyes supported by the parallel conformer of diarylethene, Angew. Chem. Int. Ed. 53 (2014) 2602–2606.

    32. [32]

      [32] A. Falciatore, C. Bowler, The evolution and function of blue and red light photoreceptors, Curr. Top. Dev. Biol. 68 (2005) 317–350.

    33. [33]

      [33] E. Schäfer, C. Bowler, Phytochrome-mediated photoperception and signal transduction in higher plants, EMBO Rep. 3 (2002) 1042–1048.

    34. [34]

      [34] O. Babii, S. Afonin, M. Berditsch, et al., Controlling biological activity with light: diarylethene-containing cyclic peptidomimetics, Angew. Chem. Int. Ed. 53 (2014) 3392–3395.

    35. [35]

      [35] D. Vomasta, C. Hogner, N.R. Branda, B. Konig, Regulation of human carbonic anhydrase I (hCAI) activity by using a photochromic inhibitor, Angew. Chem. Int. Ed. 47 (2008) 7644–7647.

    36. [36]

      [36] A.A. Beharry, G.A. Woolley, Azobenzene photoswitches for biomolecules, Chem. Soc. Rev. 40 (2011) 4422–4437.

    37. [37]

      [37] S. Ogasawara, M. Maeda, Reversible photoswitching of a G-quadruplex, Angew. Chem. Int. Ed. 48 (2009) 6671–6674.

    38. [38]

      [38] A. Mammana, G.T. Carroll, J. Areephong, B.L. Feringa, A chiroptical photoswitchable DNA complex, J. Phys. Chem. B 115 (2011) 11581–11587.

    39. [39]

      [39] H. Cahova, A. Jaschke, Nucleoside-based diarylethene photoswitches and their facile incorporation into photoswitchable DNA, Angew. Chem. Int. Ed. 52 (2013) 3186–3190.

    40. [40]

      [40] Y. Liu, A.H. Flood, P.A. Bonvallet, et al., Linear artificial molecular muscles, J. Am. Chem. Soc. 127 (2005) 9745–9759.

    41. [41]

      [41] L. Fang, M. Hmadeh, J. Wu, et al., Acid–base actuation of [c2]daisy chains, J. Am. Chem. Soc. 131 (2009) 7126–7134.

    42. [42]

      [42] G. Paul, Clark, W. Michael, R.H. Day, Grubbs, Switching and extension of a [c2]daisy-chain dimer polymer, J. Am. Chem. Soc. 131 (2009) 13631–13633.

    43. [43]

      [43] M. Morimoto, M. Irie, A diarylethene cocrystal that converts light into mechanical work, J. Am. Chem. Soc. 132 (2010) 14172–14178.

    44. [44]

      [44] D. Kitagawa, H. Nishi, S. Kobatake, Photoinduced twisting of a photochromic diarylethene crystal, Angew. Chem. Int. Ed. 52 (2013) 9320–9322.

    45. [45]

      [45] Y. Li, M. Wang, H. Wang, A. Urbas, Q. Li, Rationally designed axially chiral diarylethene switches with high helical twisting power, Chem. Eur. J. 20 (2014) 16286–16292.

    46. [46]

      [46] L. Hou, X. Zhang, T.C. Pijper, W.R. Browne, B.L. Feringa, Reversible photochemical control of singlet oxygen generation using diarylethene photochromic switches, J. Am. Chem. Soc. 136 (2014) 910–913.

    47. [47]

      [47] J.F. Lovell, T.W.B. Liu, J. Chen, G. Zheng, Activatable photosensitizers for imaging and therapy, Chem. Rev. 110 (2010) 2839–2857.

    48. [48]

      [48] X. Cui, J. Zhao, Y. Zhou, J. Ma, Y. Zhao, Reversible photoswitching of triplet–triplet annihilation upconversion using dithienylethene photochromic switches, J. Am. Chem. Soc. 136 (2014) 9256–9259.

    49. [49]

      [49] J. Zhao, W. Wu, J. Sun, S. Guo, Triplet photosensitizers: from molecular design to applications, Chem. Soc. Rev. 42 (2013) 5323–5351.

  • 加载中
    1. [1]

      Yan WangSi-Meng ZhaiPeng LuoXi-Yan DongJia-Yin WangZhen HanShuang-Quan Zang . Vapor- and temperature-triggered reversible optical switching for multi-response Cu8 cluster supercrystals. Chinese Chemical Letters, 2024, 35(11): 109493-. doi: 10.1016/j.cclet.2024.109493

    2. [2]

      Rui WangYang LiangJulius Rebek Jr.Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228

    3. [3]

      Chao ZhangAi-Feng LiuShihui LiFang-Yuan ChenJun-Tao ZhangFang-Xing ZengHui-Chuan FengPing WangWen-Chao GengChuan-Rui MaDong-Sheng Guo . A supramolecular formulation of icariin@sulfonatoazocalixarene for hypoxia-targeted osteoarthritis therapy. Chinese Chemical Letters, 2025, 36(1): 109752-. doi: 10.1016/j.cclet.2024.109752

    4. [4]

      Jie YangXin-Yue LouDihua DaiJingwei ShiYing-Wei Yang . Desymmetrized pillar[8]arenes: High-yield synthesis, functionalization, and host-guest chemistry. Chinese Chemical Letters, 2025, 36(1): 109818-. doi: 10.1016/j.cclet.2024.109818

    5. [5]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    6. [6]

      Xuanyu WangZhao GaoWei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757

    7. [7]

      Xuying YuJiarong MiYulan HanCai SunMingsheng WangGuocong Guo . A stable radiochromic semiconductive viologen-based metal–organic framework for dual-mode direct X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109233-. doi: 10.1016/j.cclet.2023.109233

    8. [8]

      Yanting YangGuorong WangKangjing LiWen YangJing ZhangJian ZhangShili LiXianming Zhang . Tuning up of chromism, luminescence in cadmium-viologen complexes through polymorphism strategy: Inkless erasable printing application. Chinese Chemical Letters, 2025, 36(1): 110123-. doi: 10.1016/j.cclet.2024.110123

    9. [9]

      Kang WeiJiayu LiWen ZhangBing YuanMing-De LiPingwu Du . A strained π-extended [10]cycloparaphenylene carbon nanoring. Chinese Chemical Letters, 2024, 35(5): 109055-. doi: 10.1016/j.cclet.2023.109055

    10. [10]

      Junying ZhangRuochen LiHaihua WangWenbing KangXing-Dong Xu . Photo-induced tunable luminescence from an aggregated amphiphilic ethylene-pyrene derivative in aqueous media. Chinese Chemical Letters, 2024, 35(6): 109216-. doi: 10.1016/j.cclet.2023.109216

    11. [11]

      Zhimin SunXin-Hui GuoYue ZhaoQing-Yu MengLi-Juan XingHe-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162

    12. [12]

      Zixi ZouJingyuan WangYian SunQian WangDa-Hui Qu . Controlling molecular assembly on time scale: Time-dependent multicolor fluorescence for information encryption. Chinese Chemical Letters, 2024, 35(7): 108972-. doi: 10.1016/j.cclet.2023.108972

    13. [13]

      Cheng-Da ZhaoHuan YaoShi-Yao LiFangfang DuLi-Li WangLiu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879

    14. [14]

      Zhengzhong ZhuShaojun HuZhi LiuLipeng ZhouChongbin TianQingfu Sun . A cationic radical lanthanide organic tetrahedron with remarkable coordination enhanced radical stability. Chinese Chemical Letters, 2025, 36(2): 109641-. doi: 10.1016/j.cclet.2024.109641

    15. [15]

      Jingyu ChenSha WuYuhao WangJiong Zhou . Near-perfect separation of alicyclic ketones and alicyclic alcohols by nonporous adaptive crystals of perethylated pillar[5]arene and pillar[6]arene. Chinese Chemical Letters, 2025, 36(4): 110102-. doi: 10.1016/j.cclet.2024.110102

    16. [16]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    17. [17]

      Zishuo Yi Peng Liu Yan Xu . Fluorescent “Chameleon”: A Popular Science Experiment Based on Dynamic Luminescence. University Chemistry, 2024, 39(9): 304-310. doi: 10.12461/PKU.DXHX202311079

    18. [18]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    19. [19]

      Ling Zhang Jing Kang . Turn Waste into Valuable: Preparation of High-Strength Water-Based Adhesives from Polymethylmethacrylate Wastes: a Comprehensive Chemical Experiments. University Chemistry, 2024, 39(2): 221-226. doi: 10.3866/PKU.DXHX202306075

    20. [20]

      Jiarui Wu Gengxin Wu Yan Wang Yingwei Yang . Crystal Engineering Based on Leaning Towerarenes. University Chemistry, 2024, 39(3): 58-62. doi: 10.3866/PKU.DXHX202304014

Metrics
  • PDF Downloads(0)
  • Abstract views(630)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return