Citation: Xue-Xian Chen, Li-Ming Yuan. Colorimetric enantiodiscrimination of mandelic acid by indicator displacement assay[J]. Chinese Chemical Letters, ;2015, 26(8): 1019-1021. doi: 10.1016/j.cclet.2015.04.027 shu

Colorimetric enantiodiscrimination of mandelic acid by indicator displacement assay

  • Corresponding author: Li-Ming Yuan, 
  • Received Date: 19 December 2014
    Available Online: 27 March 2015

    Fund Project: This work was supported by the National Natural Science Foundation of China (No. 21165022). (No. 21165022)

  • The colorimetric enantiodiscrimination between mandelic acid and L-proline-Cu (II) is exploited to develop enantioselective indicator displacement assays. The sensitivity of the assay could be tuned by using a colorimetric indicator. The chromophoric ligand, pyrocatechol violet, effectively competes with the mandelic acid guest for open coordination sites on L-proline-Cu (II). The ΔA could be increased to 0.12 by changing the ratio of (+)-and (-)-mandelic acid concentrations that were found to be optimal from the displacement experiments. The resultant enantiomer excess versus ΔA relationship is linear. From the calibration curves, the absorbance values of the unknowns may be calculated for the enantiomeric excess value and the colorimetric enantiodiscrimination of mandelic acid can thus be obtained.
  • 加载中
    1. [1]

      [1] N.M. Maier, P. Franco, W. Lindner, Separation of enantiomers: needs, challenges, perspectives, J. Chromatogr. A 906 (2001) 3-33.

    2. [2]

      [2] T. Ikai, Y. Okamoto, Structure control of polysaccharide derivatives for efficient separation of enantiomers by chromatography, Chem. Rev. 109 (2009) 6077-6101.

    3. [3]

      [3] M. Sohail, Y.F. Wang, S.X. Wu, et al., Non-superimposable mirror image crystals of enantiomers by spontaneous resolution and the chiral discrimination mechanism, Chin. Chem. Lett. 24 (2013) 695-698.

    4. [4]

      [4] M. Huang, W.J. Chen, Y. Zhou, et al., Enantiomeric separations of four basic drugs containing N-alkyl groups by a RP-HPLC system using SBE-β-CD as chiral mobile phase additive, Chin. Chem. Lett. 24 (2013) 840-844.

    5. [5]

      [5] A. Kurganov, Chiral chromatographic separations based on ligand exchange, J. Chromatogr. A 906 (2001) 51-71.

    6. [6]

      [6] J. Su, Y.Q. Sun, F.J. Huo, Y.T. Yang, C.X. Yin, Naked-eye determination of oxalate anion in aqueous solution with copper ion and pyrocatechol violet, Analyst 135 (2010) 2918-2923.

    7. [7]

      [7] X. Zhang, J. Yin, J. Yoon, Recent advances in development of chiral fluorescent and colorimetric sensors, Chem. Rev. 114 (2014) 4918-4959.

    8. [8]

      [8] D. Leung, S.O. Kang, E.V. Anslyn, Rapid determination of enantiomeric excess: a focus on optical approaches, Chem. Soc. Rev. 41 (2012) 448-479.

    9. [9]

      [9] X.X. Liu, Y.S. Zheng, Chiral nitrogen-containing calix[4]crown—an excellent receptor for chiral recognition of mandelic acid, Tetrahedron Lett. 47 (2006) 6357-6360.

    10. [10]

      [10] F. Miao, J. Zhou, D. Tian, H. Li, Enantioselective recognition of mandelic acid with (R)-1, 1-bi-2-naphthol-linked calix[4]arene via fluorescence and dynamic light scattering, Org. Lett. 14 (2012) 3572-3575.

    11. [11]

      [11] K. Tanaka, T. Tsuchitani, N. Fukuda, A. Masumoto, R. Arakawa, Highly enantioselective fluorescent recognition of mandelic acid derivatives by chiral salen macrocycles, Tetrahedron Asymm. 23 (2012) 205-208.

    12. [12]

      [12] L. Xu, Y.Y. Yang, Y.Q. Wang, J.Z. Gao, Chiral salen Mn(III) complex-based enantioselective potentiometric sensor for L-mandelic acid, Anal. Chim. Acta 653 (2009) 217-221.

    13. [13]

      [13] D.A. Tsioupi, R.I.S. Staden, C.P.K. Christodoulou, Chiral selectors in CE: recent developments and applications, Electrophoresis 34 (2013) 178-204.

    14. [14]

      [14] Y. Okamoto, E. Yashima, Polysaccharide derivatives for chromatographic separation of enantiomers, Angew. Chem. Int. Ed. 37 (1998) 1020-1043.

    15. [15]

      [15] J.F. Folmer-Andersen, V.M. Lynch, E.V. Anslyn, Colorimetric enantiodiscrimination of α-amino acids in protic media, J. Am. Chem. Soc. 127 (2005) 7986-7987.

    16. [16]

      [16] X.F. Mei, C. Wolf, Determination of enantiomeric excess and concentration of unprotected amino acids, amines, amino alcohols, and carboxylic acids by competitive binding assays with a chiral Scandium complex, J. Am. Chem. Soc. 128 (2006) 13326-13327.

  • 加载中
    1. [1]

      Yujia ShiYan QiaoPengfei XieMiaomiao TianXingwei LiJunbiao ChangBingxian Liu . Rhodium-catalyzed enantioselective in situ C(sp3)−H heteroarylation by a desymmetrization approach. Chinese Chemical Letters, 2024, 35(10): 109544-. doi: 10.1016/j.cclet.2024.109544

    2. [2]

      Shuai ZhuMingjie ChenHaichao ShenHanming DingWenbo LiJunliang Zhang . Palladium/Xu-Phos-catalyzed enantioselective arylalkoxylation reaction of γ-hydroxyalkenes at room temperature. Chinese Chemical Letters, 2024, 35(11): 109879-. doi: 10.1016/j.cclet.2024.109879

    3. [3]

      Yang Chen Peng Chen Yuyang Song Yuxue Jin Song Wu . Application of Chemical Transformation Driven Impurity Separation in Experiments Teaching: A Novel Method for Purification of α-Fluorinated Mandelic Acid. University Chemistry, 2024, 39(6): 253-263. doi: 10.3866/PKU.DXHX202310077

    4. [4]

      Xinghui YaoZhouyu WangDa-Gang Yu . Sustainable electrosynthesis: Enantioselective electrochemical Rh(III)/chiral carboxylic acid-catalyzed oxidative CH cyclization coupled with hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(9): 109916-. doi: 10.1016/j.cclet.2024.109916

    5. [5]

      Junying LIXinyan CHENXihui DIAOMuhammad YaseenChao CHENHao WANGChuansong QIWei LI . Chiral fluorescent sensor Tb3+@Cd-CP based on camphoric acid for the enantioselective recognition of R- and S-propylene glycol. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2497-2504. doi: 10.11862/CJIC.20240084

    6. [6]

      Yuxin WangZhengxuan SongYutao LiuYang ChenJinping LiLibo LiJia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779

    7. [7]

      Xingfen HuangJiefeng ZhuChuan He . Catalytic enantioselective N-silylation of sulfoximine. Chinese Chemical Letters, 2024, 35(4): 108783-. doi: 10.1016/j.cclet.2023.108783

    8. [8]

      Minghui ZhangNa ZhangQian ZhaoChao WangAlexander SteinerJianliang XiaoWeijun Tang . Cobalt pincer complex-catalyzed highly enantioselective hydrogenation of quinoxalines. Chinese Chemical Letters, 2025, 36(4): 110081-. doi: 10.1016/j.cclet.2024.110081

    9. [9]

      Yi-Fan WangHao-Yun YuHao XuYa-Jie WangXiaodi YangYu-Hui WangPing TianGuo-Qiang Lin . Rhodium(Ⅲ)-catalyzed diastereo- and enantioselective hydrosilylation/cyclization reaction of cyclohexadienone-tethered α, β-unsaturated aldehydes. Chinese Chemical Letters, 2024, 35(9): 109520-. doi: 10.1016/j.cclet.2024.109520

    10. [10]

      Yuhan LiuJingyang ZhangGongming YangJian Wang . Highly enantioselective carbene-catalyzed δ-lactonization via radical relay cross-coupling. Chinese Chemical Letters, 2025, 36(1): 109790-. doi: 10.1016/j.cclet.2024.109790

    11. [11]

      Yuemin ChenYunqi WuGuoao WangFeihu CuiHaitao TangYingming Pan . Electricity-driven enantioselective cross-dehydrogenative coupling of two C(sp3)-H bonds enabled by organocatalysis. Chinese Chemical Letters, 2024, 35(9): 109445-. doi: 10.1016/j.cclet.2023.109445

    12. [12]

      Ruixue LiuXiaobing DingQiwei LangGen-Qiang ChenXumu Zhang . Enantioselective and divergent construction of chiral amino alcohols and oxazolidin-2-ones via Ir-f-phamidol-catalyzed dynamic kinetic asymmetric hydrogenation. Chinese Chemical Letters, 2025, 36(3): 110037-. doi: 10.1016/j.cclet.2024.110037

    13. [13]

      Xiaohui FuYanping ZhangJuan LiaoZhen-Hua WangYong YouJian-Qiang ZhaoMingqiang ZhouWei-Cheng Yuan . Palladium-catalyzed enantioselective decarboxylation of vinyl cyclic carbamates: Generation of amide-based aza-1,3-dipoles and application to asymmetric 1,3-dipolar cycloaddition. Chinese Chemical Letters, 2024, 35(12): 109688-. doi: 10.1016/j.cclet.2024.109688

    14. [14]

      Guorong LiYijing WuChao ZhongYixin YangZian Lin . Predesigned covalent organic framework with sulfur coordination: Anchoring Au nanoparticles for sensitive colorimetric detection of Hg(Ⅱ). Chinese Chemical Letters, 2024, 35(5): 108904-. doi: 10.1016/j.cclet.2023.108904

    15. [15]

      Jia ChenYun LiuZerong LongYan LiHongdeng Qiu . Colorimetric detection of α-glucosidase activity using Ni-CeO2 nanorods and its application to potential natural inhibitor screening. Chinese Chemical Letters, 2024, 35(9): 109463-. doi: 10.1016/j.cclet.2023.109463

    16. [16]

      Caixia ZhuQing HongKaiyuan WangYanfei ShenSongqin LiuYuanjian Zhang . Single nanozyme-based colorimetric biosensor for dopamine with enhanced selectivity via reactivity of oxidation intermediates. Chinese Chemical Letters, 2024, 35(10): 109560-. doi: 10.1016/j.cclet.2024.109560

    17. [17]

      Yang QinJiangtian LiXuehao ZhangKaixuan WanHeao ZhangFeiyang HuangLimei WangHongxun WangLongjie LiXianjin Xiao . Toeless and reversible DNA strand displacement based on Hoogsteen-bond triplex. Chinese Chemical Letters, 2024, 35(5): 108826-. doi: 10.1016/j.cclet.2023.108826

    18. [18]

      Zhichao ZhouFuqian ChenXiaotong XiaDong YeRong ZhouLei LiTao DengZhenhua DingFang Liu . Developing a fluorescence substrate for HRP-based diagnostic assays with superiorities over the commercial ADHP. Chinese Chemical Letters, 2024, 35(6): 108970-. doi: 10.1016/j.cclet.2023.108970

    19. [19]

      Zhiqing GeZuxiong PanShuo YanBaoying ZhangXiangyu ShenMozhen WangXuewu Ge . Novel high-temperature thermochromic polydiacetylene material and its application as thermal indicator. Chinese Chemical Letters, 2024, 35(11): 109850-. doi: 10.1016/j.cclet.2024.109850

    20. [20]

      Gengchen GuoTianyu ZhaoRuichang SunMingzhe SongHongyu LiuSen WangJingwen LiJingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198

Metrics
  • PDF Downloads(0)
  • Abstract views(720)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return