Citation:
Guang-Zong Tian, Xiao-Li Wang, Jing Hu, Xue-Bin Wang, Xiao-Qiang Guo, Jian Yin. Recent progress of sugar amino acids: Synthetic strategies and applications as glycomimetics and peptidomimetics[J]. Chinese Chemical Letters,
;2015, 26(8): 922-930.
doi:
10.1016/j.cclet.2015.04.026
-
In order to meet the increasing demands for the development of large varieties of new molecules for discovering new drugs and materials, organic chemists are developing many novel multifunctional building blocks, which are assembled rationally to create ‘nature-like’ and yet unnatural organic molecules with well-defined structures and useful properties. Sugar amino acids (SAAs), the carbohydrate derivatives bearing both amino and carboxylic acid functional groups, are important ones of thesemultifunctional building blocks, which can be used to create novelmaterials with potential applications as glycomimetics and peptidomimetics. This review will focus on recent synthetic strategies of SAAs and their applications in creating large number of structurally diverse glycomimetics and peptidomimetics.
-
Keywords:
- Sugar amino acids,
- Synthetic strategy,
- Glycomimetics,
- Peptidomimetics
-
-
-
[1]
[1] T.K. Chakraborty, P. Srinivasu, S. Tapadar, B.K. Mohan, Sugar amino acids and related molecules: some recent developments, J. Chem. Sci. 116 (2004) 187-207.
-
[2]
[2] T.K. Chakraborty, P. Srinivasu, S. Tapadar, B.K. Mohan, Sugar amino acids in designing new molecules, Glycoconj. J. 22 (2005) 83-93.
-
[3]
[3] S.A.W. Gruner, E. Locardi, E. Lohof, H. Kessler, Carbohydrate-based mimetics in drug design: sugar amino acids and carbohydrate scaffolds, Chem. Rev. 102 (2002) 491-514.
-
[4]
[4] X. Chen, A. Varki, Advances in the biology and chemistry of sialic acids, ACS Chem. Biol. 5 (2010) 163-176.
-
[5]
[5] J. Gervay-Hague, J.T.M. Weathers, Pyranosyl sugar amino acid conjugates: their biological origins, synthetic preparations, and structural characterization, J. Carbohydr. Chem. 21 (2002) 867-910.
-
[6]
[6] M.T. Migawa, L.M. Risen, R.H. Griffey, E.E. Swayze, An efficient synthesis of gougerotin and related analogues using solid-and solution-phase methodology, Org. Lett. 7 (2005) 3429-3432.
-
[7]
[7] A. Maciejewska, J. Lukasiewicz, T. Niedziela, Z. Szewczukc, C. Lugowski, Structural analysis of the O-specific polysaccharide isolated from Plesiomonas shigelloides O51 lipopolysaccharide, Carbohydr. Res. 344 (2009) 894-900.
-
[8]
[8] G.Q. Niu, H.R. Tan, Nucleoside antibiotics: biosynthesis, regulation, and biotechnology, Trends Microbiol. 23 (2015) 110-119.
-
[9]
[9] M. Risseeuw, M. Overhand, G.W.J. Fleet, M.I. Simone, A compendium of cyclic sugar amino acids and their carbocyclic and heterocyclic nitrogen analogues, Amino Acids 45 (2013) 613-689.
-
[10]
[10] M. Nakajima, K. Itoi, Y. Takamatsu, et al., Hydantocidin: a new compound with herbicidal activity from Streptomyces hygroscopicus, J. Antibiot. (Tokyo) 44 (1991) 293-300.
-
[11]
[11] D. Tuwalska, A. Sikorski, B. Liberek, Synthesis and geometry of methyl (methyl 4-O-acetyl-3-azido-2,3-dideoxy-α/β-D-arabino-and -α/β-D-ribo-hexopyranosid) urinates, Carbohydr. Res. 343 (2008) 404-411.
-
[12]
[12] D. Tuwalska, J. Sienkiewicz, B. Liberek, Synthesis and conformational analysis of methyl 3-amino-2, 3-dideoxyhexopyranosiduronic acids, new sugar amino acids, and their diglycotides, Carbohydr. Res. 343 (2008) 1142-1152.
-
[13]
[13] P. Phiasivongsa, J. Gallagher, C.N. Chen, et al., Palladium-charcoal-catalyzed reduction of tri-O-acetyl-β-L-fucopyranosyl cyanide: a route to small cluster oligosaccharide mimetics (SCOMs), Org. Lett. 4 (2002) 4587-4590.
-
[14]
[14] E. Lohof, E. Planker, C.Mang, et al., Carbohydrate derivatives for use in drug design: cyclicαv-selective RGD peptides, Angew. Chem. Int. Ed. Engl. 39 (2000) 2761-2764.
-
[15]
[15] A.E.J. de Nooy, A.C. Besemer, et al., Selective oxidation of primary alcohols mediated by nitroxyl radical in aqueous solution. Kinetics and mechanism, Tetrahedron 51 (1995) 8023-8032.
-
[16]
[16] E. Kallin, Use of glycosylamines in preparation of oligosaccharide polyacrylamide copolymers, Methods Enzymol. 242 (1994) 221-226.
-
[17]
[17] L.Q. Ying, J. Gervay-Hague, Synthesis of N-(fluoren-9-ylmethoxycarbonyl)glycopyranosylamine uronic acids, Carbohydr. Res. 339 (2004) 367-375.
-
[18]
[18] L.Q. Ying, J. Gervay-Hague, General methods for the synthesis of glycopyranosyluronic acid azides, Carbohydr. Res. 338 (2003) 835-841.
-
[19]
[19] J.P. McDevitt, P.T. Lansbury Jr., Glycosamino acids: new building blocks for combinatorial synthesis, J. Am. Chem. Soc. 118 (1996) 3818-3828.
-
[20]
[20] (a) R.M. van Well, H.S. Overkleeft, M. Overhand, et al., Parallel synthesis of cyclic sugar amino acid/amino acid hybrid molecules, Tetrahedron Lett. 41 (2000) 9331-9335; (b) R.M. van Well, L. Marinelli, K. Erkelens, et al., Synthesis and structural analysis of cyclic oligomers consisting of furanoid and pyranoid e-sugar amino acids, Eur. J. Org. Chem. 12 (2003) 2303-2313.
-
[21]
[21] E.G. von Roedern, E. Lohof, G. Hessler, M. Hoffmann, H. Kessler, Synthesis and conformational analysis of linear and cyclic peptides containing sugar amino acids, J. Am. Chem. Soc. 118 (1996) 10156-10167.
-
[22]
[22] Y. Suhara, M. Kurihara, A. Kittaka, Y. Ichikawa, Efficient synthesis of carbopeptoid oligomers: insight into mimicry of b-peptide, Tetrahedron 62 (2006) 8207-8217.
-
[23]
[23] R.W. Myers, L.C. Lee, Synthesis and characterization of some anomeric pairs of per-O-acetylated aldohexopyranosyl cyanides (per-O-acetylated 2,6-anhydroheptononitriles). On the reaction of per-O-acetylaldohexopyranosyl bromides with mercuric cyanide in nitromethane, Carbohydr. Res. 132 (1984) 61-82.
-
[24]
[24] T.K. Chakraborty, S. Ghosh, S. Jayaprakash, Sugar amino acids and their uses in designing bioactive molecules, Curr. Med. Chem. 9 (2002) 421-435.
-
[25]
[25] F. Schweizer, Unusual amino acids accessed through sugar-amino acid hybrids and incorporation into biologically active peptides, Trends Glycosci. Glycotechnol. 15 (2003) 315-328.
-
[26]
[26] Y. Suhara, Y. Yamaguchi, B. Collins, et al., Oligomers of glycamino acid, Bioorg. Med. Chem. 10 (2002) 1999-2013.
-
[27]
[27] Z. Song, X.P. He, G.R. Chen, J. Xie, 6-O-amino-2-O-carboxymethyl glucopyranoside as novel glycoaminoxy acid building block for the construction of oligosaccharide mimetics, Synthesis 17 (2011) 2761-2766.
-
[28]
[28] M.I. Simone, A.A. Edwards, G.E. Tranter, G.W.J. Fleet, C-3 branched d-3, 5-cis-and trans-THF sugar amino acids: synthesis of the first generation of branched homooligomers, Amino Acids 41 (2011) 643-661.
-
[29]
[29] M. Mé nand, J.C. Blais, L. Hamon, J.M. Valé ry, J. Xie, Synthesis of orthogonally protected cyclic homooligomers from sugar amino acids, J. Org. Chem. 70 (2005) 4423-4430.
-
[30]
[30] A. Feher-Voelger, J. Borges-Gonzá lez, R. Carrillo Dr, et al., Synthesis and conformational analysis of cyclic homooligomers from pyranoid e-sugar amino acids, Chem. Eur. J. 20 (2014) 4007-4022.
-
[31]
[31] J.P. Saludes, J.B. Ames, J. Gervay-Hague, Synthesis and structural characterization of sialic acid-glutamic acid hybrid foldamers as conformational surrogates of a-2, 8-linked polysialic acid, J. Am. Chem. Soc. 131 (2009) 5495-5505.
-
[32]
[32] M.D.P. Risseeuw, B.I. Florea, G.A. van der Marel, H.S. Overkleeft, M. Overhand, Sugar amino acid based peptide epoxyketones as potential proteasome inhibitors, Bioorg. Chem. 38 (2010) 202-209.
-
[33]
[33] A. Siriwardena, K.K. Pulukuri, P.S. Kandiyal, et al., Sugar-modified foldamers as conformationally defined and biologically distinct glycopeptide mimics, Angew. Chem. Int. Ed. 52 (2013) 10221-10226.
-
[34]
[34] (a) R.M. van Well, L. Marinelli, C. Altona, et al., Conformational analysis of furanoid ε-sugar amino acid containing cyclic peptides by NMR spectroscopy, molecular dynamics simulation, and X-ray crystallography: evidence for a novel turn structure, J. Am. Chem. Soc. 125 (2003) 10822-10829; (b) R.M. van Well, H.S. Overkleeft, G.A. van der Marel, et al., Solid-phase synthesis of cyclic RGD-furanoid sugar amino acid peptides as integrin inhibitors, Bioorg. Med. Chem. Lett. 13 (2003) 331-334.
-
[35]
[35] T.K. Chakraborty, D. Koley, R. Ravi, et al., Synthesis, conformational analysis and biological studies of cyclic cationic antimicrobial peptides containing sugar amino acids, J. Org. Chem. 73 (2008) 8731-8744.
-
[36]
[36] A.D. Knijnenburg, A.W. Tuin, E. Spalburg, et al., Exploring the conformational and biological versatility of β-turn-modified gramicidin S by using sugar amino acid homologues that vary in ring size, Chem. Eur. J. 17 (2011) 3995-4004.
-
[37]
[37] S. Gajendra, G. Uttam, P. Sudip, et al., βγ-fused turn structures in sugar amino acid (SAA) containing cyclic tetrapeptides with a3d architecture, Tetrahedron 70 (2014) 7681-7685.
-
[1]
-
-
-
[1]
Peng Chen , Lijuan Liang , Yufei Zhu , Zhimin Xing , Zhenhua Jia , Teck-Peng Loh . Strategies for constructing seven-membered rings: Applications in natural product synthesis. Chinese Chemical Letters, 2024, 35(6): 109229-. doi: 10.1016/j.cclet.2023.109229
-
[2]
Hangwen Zheng , Ziqian Wang , HuiJie Zhang , Jing Lei , Rihui Li , Jian Yang , Haiyan Wang . Synthesis and applications of B, N co-doped carbons for zinc-based energy storage devices. Chinese Chemical Letters, 2025, 36(3): 110245-. doi: 10.1016/j.cclet.2024.110245
-
[3]
Qiang Wu , Baofeng Wang . Exploring synthetic strategy for stabilizing nickel-rich layered oxide cathodes through structural design. Chinese Chemical Letters, 2024, 35(12): 110089-. doi: 10.1016/j.cclet.2024.110089
-
[4]
Yue Sun , Liming Yang , Yaohang Cheng , Guanghui An , Guangming Li . Pd(I)-catalyzed ring-opening arylation of cyclopropyl-α-aminoamides: Access to α-ketoamide peptidomimetics. Chinese Chemical Letters, 2024, 35(6): 109250-. doi: 10.1016/j.cclet.2023.109250
-
[5]
Chuan-Zhi Ni , Ruo-Ming Li , Fang-Qi Zhang , Qu-Ao-Wei Li , Yuan-Yuan Zhu , Jie Zeng , Shuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862
-
[6]
Jie ZHANG , Xin LIU , Zhixin LI , Yuting PEI , Yuqi YANG , Huimin LI , Zhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310
-
[7]
Zhen Dai , Linzhi Tan , Yeyu Su , Kerui Zhao , Yushun Tian , Yu Liu , Tao Liu . Site-specific incorporation of reduction-controlled guest amino acids into proteins for cucurbituril recognition. Chinese Chemical Letters, 2024, 35(5): 109121-. doi: 10.1016/j.cclet.2023.109121
-
[8]
Xiang Huang , Dongzhen Xu , Yang Liu , Xia Huang , Yangfan Wu , Dongmei Fang , Bing Xia , Wei Jiao , Jian Liao , Min Wang . Asymmetric synthesis of difluorinated α-quaternary amino acids (DFAAs) via Cu-catalyzed difluorobenzylation of aldimine esters. Chinese Chemical Letters, 2024, 35(12): 109665-. doi: 10.1016/j.cclet.2024.109665
-
[9]
Qian Ren , Xue Dai , Ran Cen , Yang Luo , Mingyang Li , Ziyun Zhang , Qinghong Bai , Zhu Tao , Xin Xiao . A cucurbit[8]uril-based supramolecular phosphorescent assembly: Cell imaging and sensing of amino acids in aqueous solution. Chinese Chemical Letters, 2024, 35(12): 110022-. doi: 10.1016/j.cclet.2024.110022
-
[10]
Min-Hang Zhou , Jun Jiang , Wei-Min He . EDA-complexes-enabled photochemical synthesis of α-amino acids with imines and tetrabutylammonium oxalate. Chinese Chemical Letters, 2025, 36(1): 110446-. doi: 10.1016/j.cclet.2024.110446
-
[11]
Shehla Khalid , Muhammad Bilal , Nasir Rasool , Muhammad Imran . Photochemical reactions as synthetic tool for pharmaceutical industries. Chinese Chemical Letters, 2024, 35(9): 109498-. doi: 10.1016/j.cclet.2024.109498
-
[12]
Yujie Li , Ya-Nan Wang , Yin-Gen Luo , Hongcai Yang , Jinrui Ren , Xiao Li . Advances in synthetic biology-based drug delivery systems for disease treatment. Chinese Chemical Letters, 2024, 35(11): 109576-. doi: 10.1016/j.cclet.2024.109576
-
[13]
Xue-Zhi Wang , Yi-Tong Liu , Chuang-Wei Zhou , Bei Wang , Dong Luo , Mo Xie , Meng-Ying Sun , Yong-Liang Huang , Jie Luo , Yan Wu , Shuixing Zhang , Xiao-Ping Zhou , Dan Li . Amplified circularly polarized luminescence of chiral metal-organic frameworks via post-synthetic installing pillars. Chinese Chemical Letters, 2024, 35(10): 109380-. doi: 10.1016/j.cclet.2023.109380
-
[14]
Hao Wang , Meng-Qi Pan , Ya-Fei Wang , Chao Chen , Jian Xu , Yuan-Yuan Gao , Chuan-Song Qi , Wei Li , Xian-He Bu . Post-synthetic modifications of MOFs by different bolt ligands for controllable release of cargoes. Chinese Chemical Letters, 2024, 35(10): 109581-. doi: 10.1016/j.cclet.2024.109581
-
[15]
Junyi Yu , Yin Cheng , Anhong Cai , Xianfeng Huang , Qingrui Zhang . Synthetic Cu(Ⅲ) from copper plating wastewater for onsite decomplexation of Cu(Ⅱ)- and Ni(Ⅱ)-organic complexes. Chinese Chemical Letters, 2025, 36(2): 110549-. doi: 10.1016/j.cclet.2024.110549
-
[16]
Jie Ma , Jianxiang Wang , Jianhua Yuan , Xiao Liu , Yun Yang , Fei Yu . The regulating strategy of hierarchical structure and acidity in zeolites and application of gas adsorption: A review. Chinese Chemical Letters, 2024, 35(11): 109693-. doi: 10.1016/j.cclet.2024.109693
-
[17]
Shaoqing Du , Xinyong Liu , Xueping Hu , Peng Zhan . Targeting novel sites represents an effective strategy for combating drug resistance. Chinese Chemical Letters, 2025, 36(1): 110378-. doi: 10.1016/j.cclet.2024.110378
-
[18]
Mengfan Zhang , Lingyan Liu , Peng Wei , Wei Feng , Tao Yi . A proximity tagging strategy utilizing an activated aldehyde group as the active site. Chinese Chemical Letters, 2025, 36(4): 110127-. doi: 10.1016/j.cclet.2024.110127
-
[19]
Han Wu , Yumei Wang , Zekai Ren , Hailin Cong , Youqing Shen , Bing Yu . The nanocarrier strategy for crossing the blood-brain barrier in glioma therapy. Chinese Chemical Letters, 2025, 36(4): 109996-. doi: 10.1016/j.cclet.2024.109996
-
[20]
Chong Liu , Ling Li , Jiahui Gao , Yanwei Li , Nazhen Zhang , Jing Zang , Cong Liu , Zhaopei Guo , Yanhui Li , Huayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(669)
- HTML views(2)