Citation: Guang-Zong Tian, Xiao-Li Wang, Jing Hu, Xue-Bin Wang, Xiao-Qiang Guo, Jian Yin. Recent progress of sugar amino acids: Synthetic strategies and applications as glycomimetics and peptidomimetics[J]. Chinese Chemical Letters, ;2015, 26(8): 922-930. doi: 10.1016/j.cclet.2015.04.026 shu

Recent progress of sugar amino acids: Synthetic strategies and applications as glycomimetics and peptidomimetics

  • Corresponding author: Jian Yin, 
  • Received Date: 16 December 2014
    Available Online: 27 March 2015

    Fund Project: This studywas supported by the National Science Foundation for Young Scientists of China (No. 21302068) (No. 21302068) the Natural Science Foundation of Jiangsu Province, China (No. BK20130127) (No. BK20130127) Jiangsu Province "Six Summit Talent" Foundation (No. 2012-SWYY-009) (No. 2012-SWYY-009) the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20120093120002) (No. 20120093120002)the Fundamental Research Funds for theCentral Universities (Nos. JUSRP51319B, JUSRP51411B). (Nos. JUSRP51319B, JUSRP51411B)

  • In order to meet the increasing demands for the development of large varieties of new molecules for discovering new drugs and materials, organic chemists are developing many novel multifunctional building blocks, which are assembled rationally to create ‘nature-like’ and yet unnatural organic molecules with well-defined structures and useful properties. Sugar amino acids (SAAs), the carbohydrate derivatives bearing both amino and carboxylic acid functional groups, are important ones of thesemultifunctional building blocks, which can be used to create novelmaterials with potential applications as glycomimetics and peptidomimetics. This review will focus on recent synthetic strategies of SAAs and their applications in creating large number of structurally diverse glycomimetics and peptidomimetics.
  • 加载中
    1. [1]

      [1] T.K. Chakraborty, P. Srinivasu, S. Tapadar, B.K. Mohan, Sugar amino acids and related molecules: some recent developments, J. Chem. Sci. 116 (2004) 187-207.

    2. [2]

      [2] T.K. Chakraborty, P. Srinivasu, S. Tapadar, B.K. Mohan, Sugar amino acids in designing new molecules, Glycoconj. J. 22 (2005) 83-93.

    3. [3]

      [3] S.A.W. Gruner, E. Locardi, E. Lohof, H. Kessler, Carbohydrate-based mimetics in drug design: sugar amino acids and carbohydrate scaffolds, Chem. Rev. 102 (2002) 491-514.

    4. [4]

      [4] X. Chen, A. Varki, Advances in the biology and chemistry of sialic acids, ACS Chem. Biol. 5 (2010) 163-176.

    5. [5]

      [5] J. Gervay-Hague, J.T.M. Weathers, Pyranosyl sugar amino acid conjugates: their biological origins, synthetic preparations, and structural characterization, J. Carbohydr. Chem. 21 (2002) 867-910.

    6. [6]

      [6] M.T. Migawa, L.M. Risen, R.H. Griffey, E.E. Swayze, An efficient synthesis of gougerotin and related analogues using solid-and solution-phase methodology, Org. Lett. 7 (2005) 3429-3432.

    7. [7]

      [7] A. Maciejewska, J. Lukasiewicz, T. Niedziela, Z. Szewczukc, C. Lugowski, Structural analysis of the O-specific polysaccharide isolated from Plesiomonas shigelloides O51 lipopolysaccharide, Carbohydr. Res. 344 (2009) 894-900.

    8. [8]

      [8] G.Q. Niu, H.R. Tan, Nucleoside antibiotics: biosynthesis, regulation, and biotechnology, Trends Microbiol. 23 (2015) 110-119.

    9. [9]

      [9] M. Risseeuw, M. Overhand, G.W.J. Fleet, M.I. Simone, A compendium of cyclic sugar amino acids and their carbocyclic and heterocyclic nitrogen analogues, Amino Acids 45 (2013) 613-689.

    10. [10]

      [10] M. Nakajima, K. Itoi, Y. Takamatsu, et al., Hydantocidin: a new compound with herbicidal activity from Streptomyces hygroscopicus, J. Antibiot. (Tokyo) 44 (1991) 293-300.

    11. [11]

      [11] D. Tuwalska, A. Sikorski, B. Liberek, Synthesis and geometry of methyl (methyl 4-O-acetyl-3-azido-2,3-dideoxy-α/β-D-arabino-and -α/β-D-ribo-hexopyranosid) urinates, Carbohydr. Res. 343 (2008) 404-411.

    12. [12]

      [12] D. Tuwalska, J. Sienkiewicz, B. Liberek, Synthesis and conformational analysis of methyl 3-amino-2, 3-dideoxyhexopyranosiduronic acids, new sugar amino acids, and their diglycotides, Carbohydr. Res. 343 (2008) 1142-1152.

    13. [13]

      [13] P. Phiasivongsa, J. Gallagher, C.N. Chen, et al., Palladium-charcoal-catalyzed reduction of tri-O-acetyl-β-L-fucopyranosyl cyanide: a route to small cluster oligosaccharide mimetics (SCOMs), Org. Lett. 4 (2002) 4587-4590.

    14. [14]

      [14] E. Lohof, E. Planker, C.Mang, et al., Carbohydrate derivatives for use in drug design: cyclicαv-selective RGD peptides, Angew. Chem. Int. Ed. Engl. 39 (2000) 2761-2764.

    15. [15]

      [15] A.E.J. de Nooy, A.C. Besemer, et al., Selective oxidation of primary alcohols mediated by nitroxyl radical in aqueous solution. Kinetics and mechanism, Tetrahedron 51 (1995) 8023-8032.

    16. [16]

      [16] E. Kallin, Use of glycosylamines in preparation of oligosaccharide polyacrylamide copolymers, Methods Enzymol. 242 (1994) 221-226.

    17. [17]

      [17] L.Q. Ying, J. Gervay-Hague, Synthesis of N-(fluoren-9-ylmethoxycarbonyl)glycopyranosylamine uronic acids, Carbohydr. Res. 339 (2004) 367-375.

    18. [18]

      [18] L.Q. Ying, J. Gervay-Hague, General methods for the synthesis of glycopyranosyluronic acid azides, Carbohydr. Res. 338 (2003) 835-841.

    19. [19]

      [19] J.P. McDevitt, P.T. Lansbury Jr., Glycosamino acids: new building blocks for combinatorial synthesis, J. Am. Chem. Soc. 118 (1996) 3818-3828.

    20. [20]

      [20] (a) R.M. van Well, H.S. Overkleeft, M. Overhand, et al., Parallel synthesis of cyclic sugar amino acid/amino acid hybrid molecules, Tetrahedron Lett. 41 (2000) 9331-9335; (b) R.M. van Well, L. Marinelli, K. Erkelens, et al., Synthesis and structural analysis of cyclic oligomers consisting of furanoid and pyranoid e-sugar amino acids, Eur. J. Org. Chem. 12 (2003) 2303-2313.

    21. [21]

      [21] E.G. von Roedern, E. Lohof, G. Hessler, M. Hoffmann, H. Kessler, Synthesis and conformational analysis of linear and cyclic peptides containing sugar amino acids, J. Am. Chem. Soc. 118 (1996) 10156-10167.

    22. [22]

      [22] Y. Suhara, M. Kurihara, A. Kittaka, Y. Ichikawa, Efficient synthesis of carbopeptoid oligomers: insight into mimicry of b-peptide, Tetrahedron 62 (2006) 8207-8217.

    23. [23]

      [23] R.W. Myers, L.C. Lee, Synthesis and characterization of some anomeric pairs of per-O-acetylated aldohexopyranosyl cyanides (per-O-acetylated 2,6-anhydroheptononitriles). On the reaction of per-O-acetylaldohexopyranosyl bromides with mercuric cyanide in nitromethane, Carbohydr. Res. 132 (1984) 61-82.

    24. [24]

      [24] T.K. Chakraborty, S. Ghosh, S. Jayaprakash, Sugar amino acids and their uses in designing bioactive molecules, Curr. Med. Chem. 9 (2002) 421-435.

    25. [25]

      [25] F. Schweizer, Unusual amino acids accessed through sugar-amino acid hybrids and incorporation into biologically active peptides, Trends Glycosci. Glycotechnol. 15 (2003) 315-328.

    26. [26]

      [26] Y. Suhara, Y. Yamaguchi, B. Collins, et al., Oligomers of glycamino acid, Bioorg. Med. Chem. 10 (2002) 1999-2013.

    27. [27]

      [27] Z. Song, X.P. He, G.R. Chen, J. Xie, 6-O-amino-2-O-carboxymethyl glucopyranoside as novel glycoaminoxy acid building block for the construction of oligosaccharide mimetics, Synthesis 17 (2011) 2761-2766.

    28. [28]

      [28] M.I. Simone, A.A. Edwards, G.E. Tranter, G.W.J. Fleet, C-3 branched d-3, 5-cis-and trans-THF sugar amino acids: synthesis of the first generation of branched homooligomers, Amino Acids 41 (2011) 643-661.

    29. [29]

      [29] M. Mé nand, J.C. Blais, L. Hamon, J.M. Valé ry, J. Xie, Synthesis of orthogonally protected cyclic homooligomers from sugar amino acids, J. Org. Chem. 70 (2005) 4423-4430.

    30. [30]

      [30] A. Feher-Voelger, J. Borges-Gonzá lez, R. Carrillo Dr, et al., Synthesis and conformational analysis of cyclic homooligomers from pyranoid e-sugar amino acids, Chem. Eur. J. 20 (2014) 4007-4022.

    31. [31]

      [31] J.P. Saludes, J.B. Ames, J. Gervay-Hague, Synthesis and structural characterization of sialic acid-glutamic acid hybrid foldamers as conformational surrogates of a-2, 8-linked polysialic acid, J. Am. Chem. Soc. 131 (2009) 5495-5505.

    32. [32]

      [32] M.D.P. Risseeuw, B.I. Florea, G.A. van der Marel, H.S. Overkleeft, M. Overhand, Sugar amino acid based peptide epoxyketones as potential proteasome inhibitors, Bioorg. Chem. 38 (2010) 202-209.

    33. [33]

      [33] A. Siriwardena, K.K. Pulukuri, P.S. Kandiyal, et al., Sugar-modified foldamers as conformationally defined and biologically distinct glycopeptide mimics, Angew. Chem. Int. Ed. 52 (2013) 10221-10226.

    34. [34]

      [34] (a) R.M. van Well, L. Marinelli, C. Altona, et al., Conformational analysis of furanoid ε-sugar amino acid containing cyclic peptides by NMR spectroscopy, molecular dynamics simulation, and X-ray crystallography: evidence for a novel turn structure, J. Am. Chem. Soc. 125 (2003) 10822-10829; (b) R.M. van Well, H.S. Overkleeft, G.A. van der Marel, et al., Solid-phase synthesis of cyclic RGD-furanoid sugar amino acid peptides as integrin inhibitors, Bioorg. Med. Chem. Lett. 13 (2003) 331-334.

    35. [35]

      [35] T.K. Chakraborty, D. Koley, R. Ravi, et al., Synthesis, conformational analysis and biological studies of cyclic cationic antimicrobial peptides containing sugar amino acids, J. Org. Chem. 73 (2008) 8731-8744.

    36. [36]

      [36] A.D. Knijnenburg, A.W. Tuin, E. Spalburg, et al., Exploring the conformational and biological versatility of β-turn-modified gramicidin S by using sugar amino acid homologues that vary in ring size, Chem. Eur. J. 17 (2011) 3995-4004.

    37. [37]

      [37] S. Gajendra, G. Uttam, P. Sudip, et al., βγ-fused turn structures in sugar amino acid (SAA) containing cyclic tetrapeptides with a3d architecture, Tetrahedron 70 (2014) 7681-7685.

  • 加载中
    1. [1]

      Peng ChenLijuan LiangYufei ZhuZhimin XingZhenhua JiaTeck-Peng Loh . Strategies for constructing seven-membered rings: Applications in natural product synthesis. Chinese Chemical Letters, 2024, 35(6): 109229-. doi: 10.1016/j.cclet.2023.109229

    2. [2]

      Hangwen ZhengZiqian WangHuiJie ZhangJing LeiRihui LiJian YangHaiyan Wang . Synthesis and applications of B, N co-doped carbons for zinc-based energy storage devices. Chinese Chemical Letters, 2025, 36(3): 110245-. doi: 10.1016/j.cclet.2024.110245

    3. [3]

      Qiang WuBaofeng Wang . Exploring synthetic strategy for stabilizing nickel-rich layered oxide cathodes through structural design. Chinese Chemical Letters, 2024, 35(12): 110089-. doi: 10.1016/j.cclet.2024.110089

    4. [4]

      Yue SunLiming YangYaohang ChengGuanghui AnGuangming Li . Pd(I)-catalyzed ring-opening arylation of cyclopropyl-α-aminoamides: Access to α-ketoamide peptidomimetics. Chinese Chemical Letters, 2024, 35(6): 109250-. doi: 10.1016/j.cclet.2023.109250

    5. [5]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    6. [6]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    7. [7]

      Zhen DaiLinzhi TanYeyu SuKerui ZhaoYushun TianYu LiuTao Liu . Site-specific incorporation of reduction-controlled guest amino acids into proteins for cucurbituril recognition. Chinese Chemical Letters, 2024, 35(5): 109121-. doi: 10.1016/j.cclet.2023.109121

    8. [8]

      Xiang HuangDongzhen XuYang LiuXia HuangYangfan WuDongmei FangBing XiaWei JiaoJian LiaoMin Wang . Asymmetric synthesis of difluorinated α-quaternary amino acids (DFAAs) via Cu-catalyzed difluorobenzylation of aldimine esters. Chinese Chemical Letters, 2024, 35(12): 109665-. doi: 10.1016/j.cclet.2024.109665

    9. [9]

      Qian RenXue DaiRan CenYang LuoMingyang LiZiyun ZhangQinghong BaiZhu TaoXin Xiao . A cucurbit[8]uril-based supramolecular phosphorescent assembly: Cell imaging and sensing of amino acids in aqueous solution. Chinese Chemical Letters, 2024, 35(12): 110022-. doi: 10.1016/j.cclet.2024.110022

    10. [10]

      Min-Hang ZhouJun JiangWei-Min He . EDA-complexes-enabled photochemical synthesis of α-amino acids with imines and tetrabutylammonium oxalate. Chinese Chemical Letters, 2025, 36(1): 110446-. doi: 10.1016/j.cclet.2024.110446

    11. [11]

      Shehla KhalidMuhammad BilalNasir RasoolMuhammad Imran . Photochemical reactions as synthetic tool for pharmaceutical industries. Chinese Chemical Letters, 2024, 35(9): 109498-. doi: 10.1016/j.cclet.2024.109498

    12. [12]

      Yujie LiYa-Nan WangYin-Gen LuoHongcai YangJinrui RenXiao Li . Advances in synthetic biology-based drug delivery systems for disease treatment. Chinese Chemical Letters, 2024, 35(11): 109576-. doi: 10.1016/j.cclet.2024.109576

    13. [13]

      Xue-Zhi WangYi-Tong LiuChuang-Wei ZhouBei WangDong LuoMo XieMeng-Ying SunYong-Liang HuangJie LuoYan WuShuixing ZhangXiao-Ping ZhouDan Li . Amplified circularly polarized luminescence of chiral metal-organic frameworks via post-synthetic installing pillars. Chinese Chemical Letters, 2024, 35(10): 109380-. doi: 10.1016/j.cclet.2023.109380

    14. [14]

      Hao WangMeng-Qi PanYa-Fei WangChao ChenJian XuYuan-Yuan GaoChuan-Song QiWei LiXian-He Bu . Post-synthetic modifications of MOFs by different bolt ligands for controllable release of cargoes. Chinese Chemical Letters, 2024, 35(10): 109581-. doi: 10.1016/j.cclet.2024.109581

    15. [15]

      Junyi YuYin ChengAnhong CaiXianfeng HuangQingrui Zhang . Synthetic Cu(Ⅲ) from copper plating wastewater for onsite decomplexation of Cu(Ⅱ)- and Ni(Ⅱ)-organic complexes. Chinese Chemical Letters, 2025, 36(2): 110549-. doi: 10.1016/j.cclet.2024.110549

    16. [16]

      Jie MaJianxiang WangJianhua YuanXiao LiuYun YangFei Yu . The regulating strategy of hierarchical structure and acidity in zeolites and application of gas adsorption: A review. Chinese Chemical Letters, 2024, 35(11): 109693-. doi: 10.1016/j.cclet.2024.109693

    17. [17]

      Shaoqing DuXinyong LiuXueping HuPeng Zhan . Targeting novel sites represents an effective strategy for combating drug resistance. Chinese Chemical Letters, 2025, 36(1): 110378-. doi: 10.1016/j.cclet.2024.110378

    18. [18]

      Mengfan ZhangLingyan LiuPeng WeiWei FengTao Yi . A proximity tagging strategy utilizing an activated aldehyde group as the active site. Chinese Chemical Letters, 2025, 36(4): 110127-. doi: 10.1016/j.cclet.2024.110127

    19. [19]

      Han WuYumei WangZekai RenHailin CongYouqing ShenBing Yu . The nanocarrier strategy for crossing the blood-brain barrier in glioma therapy. Chinese Chemical Letters, 2025, 36(4): 109996-. doi: 10.1016/j.cclet.2024.109996

    20. [20]

      Chong LiuLing LiJiahui GaoYanwei LiNazhen ZhangJing ZangCong LiuZhaopei GuoYanhui LiHuayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118

Metrics
  • PDF Downloads(0)
  • Abstract views(669)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return