Citation: Xiu-Quan Quan, Lin Kang, Xue-Zhe Yin, Zhe-Hu Jin, Zhong-Gao Gao. Synthesis of PEGylated hyaluronic acid for loading dichloro(1,2-diaminocyclohexane)platinum(II) (DACHPt) in nanoparticles for cancer treatment[J]. Chinese Chemical Letters, ;2015, 26(6): 695-699. doi: 10.1016/j.cclet.2015.04.024 shu

Synthesis of PEGylated hyaluronic acid for loading dichloro(1,2-diaminocyclohexane)platinum(II) (DACHPt) in nanoparticles for cancer treatment

  • Corresponding author: Zhong-Gao Gao, 
  • Received Date: 26 November 2014
    Available Online: 13 March 2015

    Fund Project: This study was supported by research grants from the National Natural Science Foundation of China (No. 81373342) (No. 81373342) Beijing Natural Science Foundation (Nos. 2141004, 7142114). (Nos. 2141004, 7142114)

  • Dichloro(1,2-diaminocyclohexane)platinum(II) (DACHPt), a cisplatin (CDDP) analog, has shown lower toxicity than CDDP and no cross-resistance with CDDP in many CDDP-resistant cancers. PEGylated hyaluronan (mPEG-HA) is an mPEG conjugated with hyaluronan biodegradable polymer which is a naturally occurring biopolymer in the interstitium, is primarily cleared by the lymphatic system. mPEGhyaluronan-DACHPt (PEG-HA-Pt) conjugate could circulate long-term in the bloodstream and increase DACHPt concentration in the tumor site and decrease systemic toxicity. mPEG-HA conjugates with the range of 1%-5% substitution were synthesized, and the structures were confirmed by 1H NMR and IR. The particle size of DACHPt incorporated with mPEG-HA was about 86 nm and the loading content and efficiency were about 19% (w/w) and 86%, respectively. The synthesized mPEG-HA with different PEG substitution degrees presented non toxicity, and the cell viability of DACHPt loaded in mPEG-HA nanoparticles increased with increasing doses of DACHPt. DACHPt release from nanoparticles slightly decreased with increasing PEG substitution degree from 1% to 5% at 37 ℃, pH 7.4 PBS solution. The DACHPt loaded inmPEG-HA nanoparticles significantly inhibited the growth of A549 xenografts in nude mice when compared to the DACHPt loaded in HA nanoparticles and the control group after 4 weeks treatment (p < 0.01 compared with control). The body weight change curve shows that the mice weight loss was less than 5% by treating with both DACHPt loaded in mPEG-HA and HA nanoparticles. In conclusion, a novel DACHPt loaded mPEG-HA delivery system was developed with sustained release and increased platinum concentration in the tumor.
  • 加载中
    1. [1]

      [1] S. Carrick, D. Ghersi, N. Wilcken, J. Simes, Platinum containing regimens for metastatic breast cancer, Cochrane Database Syst. Rev. (2004) CD003374, http://dx.doi.org/10.1002/14651858.CD003374.pub3.

    2. [2]

      [2] G. Chu, Cellular-responses to cisplatin—the roles of DNA-binding proteins and DNA-repair, J. Biol. Chem. 269 (1994) 787-790.

    3. [3]

      [3] D.C. Ihde, J.L. Mulshine, B.S. Kramer, et al., Prospective randomized comparison of high-dose and standard-dose etoposide and cisplatin chemotherapy in patients with extensive-stage small-cell lung-cancer, J. Clin. Oncol. 12 (1994) 2022-2034.

    4. [4]

      [4] R.P. Perng, Y.M. Chen, M. Lu, et al., Gemcitabine versus the combination of cisplatin and etoposide in patients with inoperable non-small-cell lung cancer in a phase II randomized study, J. Clin. Oncol. 15 (1997) 2097-2102.

    5. [5]

      [5] B. Desoize, C. Madoulet, Particular aspects of platinum compounds used at present in cancer treatment, Crit. Rev. Oncol. Hematol. 42 (2002) 317-325.

    6. [6]

      [6] Y. Kidani, K. Inagaki, M. Iigo, A. Hoshi, K. Kuretani, Antitumor activity of 1,2-diaminocyclohexane-platinum complexes against sarcoma-180 ascites form, J. Med. Chem. 21 (1978) 1315-1318.

    7. [7]

      [7] H. Cabral, N. Nishiyama, S. Okazaki, H. Koyama, K. Kataoka, Preparation and biological properties of dichloro(1,2-diaminocyclo-hexane) platinum (II)(DACHPt)-loaded polymeric micelles, J. Control. Release 101 (2005) 223-232.

    8. [8]

      [8] H. Cabral, N. Nishiyama, K. Kataoka, Optimization of (1,2-diamino-cyclohexane)-platinum(II)-loaded polymeric micelles directed to improved tumor targeting and enhanced antitumor activity, J. Control. Release 121 (2007) 146-155.

    9. [9]

      [9] M. Murakami, H. Cabral, Y. Matsumoto, et al., Improving drug potency and efficacy by nanocarrier-mediated subcellular targeting, Sci. Transl. Med. 3 (2011) 64ra2.

    10. [10]

      [10] H. Cabral, Y. Matsumoto, K. Mizuno, et al., Accumulation of sub-100 nmpolymeric micelles in poorly permeable tumours depends on size, Nat. Nanotechnol. 6 (2011) 815-823.

    11. [11]

      [11] M. Rafi, H. Cabral, M. Kano, et al., Polymeric micelles incorporating (1,2-diaminocyclohexane) platinum(II) suppress the growth of orthotopic scirrhous gastric tumors and their lymph node metastasis, J. Control. Release 159 (2012) 189-196.

    12. [12]

      [12] H. Cabral, M. Murakami, H. Hojo, et al., Targeted therapy of spontaneous murine pancreatic tumors by polymeric micelles prolongs survival and prevents peritoneal metastasis, Proc. Natl. Acad. Sci. U. S. A. 110 (2013) 11397-11402.

    13. [13]

      [13] S. Deshayes, H. Cabral, T. Ishii, et al., Phenylboronic acid-installed polymeric micelles for targeting sialylated epitopes in solid tumors, J. Am. Chem. Soc. 135 (2013) 15501-15507.

    14. [14]

      [14] J.R. Fraser, T.C. Laurent, Turnover and metabolism of hyaluronan, Ciba Found. Symp. 143 (1989) 41-53 (discussion 53-59, 281-285).

    15. [15]

      [15] C.B. Knudson, W. Knudson, Hyaluronan-binding proteins in development, tissue homeostasis, and disease, FASEB J. 7 (1993) 1233-1241.

    16. [16]

      [16] J. Entwistle, C.L. Hall, E.A. Turley, HA receptors: regulators of signaling to the cytoskeleton, J. Cell. Biochem. 61 (1996) 569-577.

    17. [17]

      [17] T.C. Laurent, Biochemistry of hyaluronan, Acta Otolaryngol. 442 (1987) 7-24.

    18. [18]

      [18] K. Akima, H. Ito, Y. Iwata, et al., Evaluation of antitumor activities of hyaluronate binding antitumor drugs: synthesis, characterization and antitumor activity, J. Drug Target. 4 (1996) 1-9.

    19. [19]

      [19] Q. Hua, C.B. Knudson, W.J. Knudson, Internalization of hyaluronan by chondrocytes occurs via receptor mediated endocytosis, J. Cell Sci. 106 (1993) 365-375.

    20. [20]

      [20] V. Mironov, G.D. Prestwich, Fabrication of tubular tissue constructs by centrifugal casting of cells suspended in an in situ crosslinkable hyaluronan-gelatin hydrogel, Biomaterials 26 (2005) 7628-7635.

    21. [21]

      [21] M. Kurisawa, H. Uyama, Injectable biodegradable hydrogels composed of hyaluronic acid-tyramine conjugates for drug delivery and tissue engineering, Chem. Commun. 34 (2005) 4312-4314.

    22. [22]

      [22] K. Avgoustakis, A. Beletsi, Z. Panagi, et al., PLGA-mPEG nanoparticles of cisplatin: in vitro nanoparticle degradation, in vivo drug release and in vivo drug residence in blood properties, J. Control. Release 79 (2001) 123-135.

    23. [23]

      [23] M.S. Newman, G.T. Colbern, P.K. Working, C. Engbers, M.A. Amantea, Comparative pharmacokinetics, tissue distribution, and therapeutic effectiveness of cisplatin encapsulated in long circulating, pegylated liposomes (SPI-077) in tumor-bearing mice, Cancer Chemother. Pharmacol. 43 (1999) 1-7.

    24. [24]

      [24] Y. Ohya, T. Masunaga, T. Baba, T. Ouchi, Synthesis and cytotoxic activity of dextran carrying cis-dichloro (cyclohexanetrans-l-1,2-diamine) platinum(II) complex, J. Biomater. Sci. Polym. Ed. 7 (1996) 1085-1096.

    25. [25]

      [25] N. Nishiyama, K. Kataoka, Preparation and characterization of size-controlled polymeric micelle containing cis-dichlorodiamine-platinium(II) in the core, J. Control. Release 74 (2001) 83-94.

    26. [26]

      [26] N. Nishiyama, S. Okazaki, H. Cabral, et al., Novel cisplatin-incorporated polymeric micelles can eradicate solid tumors in mice, Cancer Res. 63 (2003) 8977-8983.

  • 加载中
    1. [1]

      Zhi LiShuya PanYuan TianShaowei LiuWeifeng WeiJinlin WangTianfeng ChenLing Wang . Selenium nanoparticles enhance the chemotherapeutic efficacy of pemetrexed against non-small cell lung cancer. Chinese Chemical Letters, 2024, 35(12): 110018-. doi: 10.1016/j.cclet.2024.110018

    2. [2]

      Huamei ZhangJingjing LiuMingyue LiShida MaXucong ZhouAixia MengWeina HanJin Zhou . Imaging polarity changes in pneumonia and lung cancer using a lipid droplet-targeted near-infrared fluorescent probe. Chinese Chemical Letters, 2024, 35(12): 110020-. doi: 10.1016/j.cclet.2024.110020

    3. [3]

      Haiyan LuJiayue YeYiping WeiHua ZhangKonstantin ChinginVladimir FrankevichHuanwen Chen . Tracing molecular margins of lung cancer by internal extractive electrospray ionization mass spectrometry. Chinese Chemical Letters, 2025, 36(2): 110077-. doi: 10.1016/j.cclet.2024.110077

    4. [4]

      Lingjun ShaBing BoJiayu LiQi LiuYa CaoJing Zhao . Precise assessment of lung cancer-derived exosomes based on dual-labelled membrane interface. Chinese Chemical Letters, 2025, 36(4): 110109-. doi: 10.1016/j.cclet.2024.110109

    5. [5]

      Yang LiuYan LiuKaiyin YangZhiruo ZhangWenbo ZhangBingyou YangHua LiLixia Chen . A selective HK2 degrader suppresses SW480 cancer cell growth by degrading HK2. Chinese Chemical Letters, 2024, 35(8): 109264-. doi: 10.1016/j.cclet.2023.109264

    6. [6]

      Boran ChengLei CaoChen LiFang-Yi HuoQian-Fang MengGanglin TongXuan WuLin-Lin BuLang RaoShubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969

    7. [7]

      Jing ChenPeisi XiePengfei WuYu HeZian LinZongwei Cai . MALDI coupled with laser-postionization and trapped ion mobility spectrometry contribute to the enhanced detection of lipids in cancer cell spheroids. Chinese Chemical Letters, 2024, 35(4): 108895-. doi: 10.1016/j.cclet.2023.108895

    8. [8]

      Yuanzheng WangChen ZhangShuyan HanXiaoli KongChangyun QuanJun WuWei Zhang . Cancer cell membrane camouflaged biomimetic gelatin-based nanogel for tumor inhibition. Chinese Chemical Letters, 2024, 35(11): 109578-. doi: 10.1016/j.cclet.2024.109578

    9. [9]

      Yanfei LiuYaqin HuYifu TanQiwen ChenZhenbao Liu . Tumor acidic microenvironment activatable DNA nanostructure for precise cancer cell targeting and inhibition. Chinese Chemical Letters, 2025, 36(1): 110289-. doi: 10.1016/j.cclet.2024.110289

    10. [10]

      Lixian FuYiyun TanYue DingWeixia QingYong Wang . Water–soluble and polarity–sensitive near–infrared fluorescent probe for long–time specific cancer cell membranes imaging and C. Elegans label. Chinese Chemical Letters, 2024, 35(4): 108886-. doi: 10.1016/j.cclet.2023.108886

    11. [11]

      Yunan YuanZhimin LuoJie ChenChaoliang HeKai HaoHuayu Tian . Constructing thermoresponsive PNIPAM-based microcarriers for cell culture and enzyme-free cell harvesting. Chinese Chemical Letters, 2024, 35(7): 109549-. doi: 10.1016/j.cclet.2024.109549

    12. [12]

      Xiaoshuai WuBailei WangYichen LiXiaoxuan GuanMingjing YinWenquan LvYin ChenFei LuTao QinHuyang GaoWeiqian JinYifu HuangCuiping LiMing GaoJunyu Lu . NIR driven catalytic enhanced acute lung injury therapy by using polydopamine@Co nanozyme via scavenging ROS. Chinese Chemical Letters, 2025, 36(2): 110211-. doi: 10.1016/j.cclet.2024.110211

    13. [13]

      Weiyu ChenZenghui LiChenguang ZhaoLisha ZhaJunfeng ShiDan Yuan . Enzyme-modulate conformational changes in amphiphile peptide for selectively cell delivery. Chinese Chemical Letters, 2024, 35(12): 109628-. doi: 10.1016/j.cclet.2024.109628

    14. [14]

      Junjie WangYan WangZhengdong LiChangqiang XieMusammir KhanXingzhou PengFabiao Yu . Triphenylamine-AIEgens photoactive materials for cancer theranostics. Chinese Chemical Letters, 2024, 35(6): 108934-. doi: 10.1016/j.cclet.2023.108934

    15. [15]

      Lishan XiongXinyuan LiXiaojie LuZhendong ZhangYan ZhangWen WuChenhui Wang . Inhaled multilevel size-tunable, charge-reversible and mucus-traversing composite microspheres as trojan horse: Enhancing lung deposition and tumor penetration. Chinese Chemical Letters, 2024, 35(9): 109384-. doi: 10.1016/j.cclet.2023.109384

    16. [16]

      Qi HuangJun LiaoJingjing LiZhengyan GuXinkang ZhangMingxue SunWenqi MengGuanchao MaoZhipeng PeiShanshan ZhangSongling LiChuan ZhangYunqin WangJihao LiuTingbin ShuMin TaoYing LuKai XiaoQingqiang XuJincai Lu . Curcumin-loaded ceria nanoenzymes for dual-action suppression of inflammation and alleviation of oxidative damage in the treatment of acute lung injury. Chinese Chemical Letters, 2025, 36(4): 109914-. doi: 10.1016/j.cclet.2024.109914

    17. [17]

      Kun-Heng LiHong-Yang ZhaoDan-Dan WangMing-Hui QiZi-Jian XuJia-Mi LiZhi-Li ZhangShi-Wen Huang . Mitochondria-targeted nano-AIEgens as a powerful inducer for evoking immunogenic cell death. Chinese Chemical Letters, 2024, 35(5): 108882-. doi: 10.1016/j.cclet.2023.108882

    18. [18]

      Yanjing LiJiayin LiYuqi ChangYunfeng LinLei Sui . Tetrahedral framework nucleic acids promote the proliferation and differentiation potential of diabetic bone marrow mesenchymal stem cell. Chinese Chemical Letters, 2024, 35(9): 109414-. doi: 10.1016/j.cclet.2023.109414

    19. [19]

      Zhixue LiuHaiqi ChenLijuan GuoXinyao SunZhi-Yuan ZhangJunyi ChenMing DongChunju Li . Luminescent terphen[3]arene sulfate-activated FRET assemblies for cell imaging. Chinese Chemical Letters, 2024, 35(9): 109666-. doi: 10.1016/j.cclet.2024.109666

    20. [20]

      Ying GaoRong ZhouQiwen WangShaolong QiYuanyuan LvShuang LiuJie ShenGuocan Yu . Natural killer cell membrane doped supramolecular nanoplatform with immuno-modulatory functions for immuno-enhanced tumor phototherapy. Chinese Chemical Letters, 2024, 35(10): 109521-. doi: 10.1016/j.cclet.2024.109521

Metrics
  • PDF Downloads(0)
  • Abstract views(770)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return