Citation: Ji-Feng Wang, Bing-Bing Shi, Gang Li. Preparations and characterizations of two MOFs constructed with hydroxylphenyl imidazole dicarboxylate[J]. Chinese Chemical Letters, ;2015, 26(9): 1059-1064. doi: 10.1016/j.cclet.2015.04.022 shu

Preparations and characterizations of two MOFs constructed with hydroxylphenyl imidazole dicarboxylate

  • Corresponding author: Gang Li, 
  • Received Date: 22 January 2015
    Available Online: 1 April 2015

    Fund Project: We gratefully acknowledge the financial support by the National Natural Science Foundation of China (No. 21341002) (No. 21341002)

  • Using the hydrothermal reactions of Mn(II) and Ba(II) salts with 2-(3-hydroxylphenyl)-1H-imidazole-4,5-dicarboxylic acid (m-OHPhH3IDC), two novel metal-organic frameworks, namely, {[Mn(m-OHPhHIDC)(H2O)]·2H2O}n (1) and {[Ba(m-OHPhH2IDC)2(H2O)3] ·2H2O}n (2) have been synthesized and structurally characterized by single-crystal X-ray crystallography, elemental analyses, and IR spectroscopy. Complex 1 features a novel non-interpenetrated three-dimensional (3,4)-connected network with one-dimensional open channels. Complex 2 exhibits a two-dimensional layered structure with rhombic grids. The role of the central metals in the formation of final architectures has been discussed. Furthermore, luminescent and thermal properties of the two complexes have been studied.
  • 加载中
    1. [1]

      [1] Y.X. Sun, W.Y. Sun, Influence of temperature on metal-organic frameworks, Chin. Chem. Lett. 25(2014) 823-828.

    2. [2]

      [2] B.L. Chen, S.C. Xiang, G.D. Qian, Metal-organic frameworks with functional pores for recognition of small molecules, Acc. Chem. Res. 43(2010) 1115-1124.

    3. [3]

      [3] H.L. Li, M. Eddaoudi, M. O'Keeffe, O.M. Yaghi, Design and synthesis of an exceptionally stable and highly porous metal-organic framework, Nature 402(1999) 276-279.

    4. [4]

      [4] J. Rocha, L.D. Carlos, F.A.A. Paz, D. Ananias, Luminescent multifunctional lanthanides-based metal-organic frameworks, Chem. Soc. Rev. 40(2011) 926-940.

    5. [5]

      [5] F.M. Hinterholzinger, A. Ranft, J.M. Feckl, et al., One-dimensional metal-organic framework photonic crystals used as platforms for vapor sorption, J. Mater. Chem. 22(2012) 10356-10362.

    6. [6]

      [6] T.K. Maji, R. Matsuda, S. Kitagawa, A flexible interpenetrating coordination framework with a bimodal porous functionality, Nat. Mater. 6(2007) 142-148.

    7. [7]

      [7] C.F. Zhuang, J.Y. Zhang, Q. Wang, et al., Temperature-dependent guest-driven single-crystal-to-single-crystal ligand exchange in a two-fold interpenetrated CdII grid network, Chem. Eur. J. 15(2009) 7578-7585.

    8. [8]

      [8] C.P. Li, M. Du, Role of solvents in coordination supramolecular systems, Chem. Commun. 47(2011) 5958-5972.

    9. [9]

      [9] Y. Sakata, S. Furukawa, M. Kondo, et al., Shape-memory nanopores induced in coordination frameworks by crystal downsizing, Science 339(2013) 193-196.

    10. [10]

      [10] X.L.Wang, C. Qin, E.B.Wang, et al., Syntheses, structures, and photoluminescence of a novel class of d10 metal complexes constructed from pyridine-3,4-dicarboxylic acid with different coordination architectures, Inorg. Chem. 43(2004) 1850-1856.

    11. [11]

      [11] S. Wang, L.R. Zhang, G.H. Li, Q.S. Huo, Y.L. Liu, Assembly of two 3-D metal-organic frameworks from Cd(II) and 4,5-imidazoledicarboxylic acid or 2-ethyl-4,5-imidazoledicarboxylic acid, CrystEngComm 10(2008) 1662-1666.

    12. [12]

      [12] L.Z. Chen, D.D. Huang, Synthesis, structure and dielectric properties of a novel Gd coordination polymer based on 2-(pyridin-4-yl)-1H-imidazole-4,5-dicarboxylate, Chin. Chem. Lett. 25(2014) 279-282.

    13. [13]

      [13] X. Li, B.L. Wu, C.Y. Niu, Y.Y. Niu, H.Y. Zhang, Syntheses of metal-2-(pyridin-4-yl)-1H-imidazole-4,5-dicarboxylate networks with topological diversity:gas adsorption, thermal stability and fluorescent emission properties, Cryst. Growth Des. 9(2009) 3423-3431.

    14. [14]

      [14] F. Xun, J.G. Wang, B. Liu, et al., Fromtwo-dimensional double decker architecture to three-dimensional pcu framework with one-dimensional tube:syntheses, structures, luminescence, and magnetic studies, Cryst. Growth Des. 12(2012) 927-938.

    15. [15]

      [15] Z.F. Xiong, R.M. Gao, Z.K. Xie, et al., Assembly of a series of MOFs based on the 2-(m-methoxyphenyl)imidazole dicarboxylate ligand, Dalton Trans. 42(2013) 4613-4624.

    16. [16]

      [16] C.J. Wang, T. Wang, W. Zhang, H.J. Lu, G. Li, Two unprecedented transition-metalorganic frameworks showing one dimensional-hexagonal channel open network and two-dimensional sheet structures, Cryst. Growth Des. 12(2012) 1091-1094.

    17. [17]

      [17] Z.F. Xiong, H.L. Jia, B. Ma, G. Li, Syntheses, crystal structures, and properties of three Co(II) supramolecules constructed from phenyl imidazole dicarboxylates, Synth. React. Inorg. Met. Org. Chem. 42(2012) 1204-1210.

    18. [18]

      [18] C.J. Wang, T. Wang, L. Li, et al., MOFs constructed with the newly designed imidazole dicarboxylate bearing a 2-position aromatic substituent:hydro (solvo)thermal syntheses, crystal structures and properties, Dalton Trans. 42(2013) 1715-1725.

    19. [19]

      [19] Z.F. Xiong, B.B. Shi, L. Li, Y.Y. Zhu, G. Li, Construction of transition-metal coordination polymers using multifunctional imidazole dicarboxylates as spacers, CrystEngComm 15(2013) 4885-4899.

    20. [20]

      [20] A.V. Lebedev, A.B. Lebedeva, V.D. Sheludyakov, et al., Synthesis and N-alkylation of 2-alkyl-and 2-arylimidazole-4,5-dicarboxylic acid esters, Russ. J. Gen. Chem. 77(2007) 949-953.

    21. [21]

      [21] G.M. Sheldrick, SHELX-97, Program for the Solution and Refinement of Crystal Structures, University of Göttingen, Germany, 1997.

    22. [22]

      [22] W.Y. Wang, X.L. Niu, Y.C. Gao, et al., One chiral and two achiral 3-D coordination polymers constructed by 2-phenyl imidazole dicarboxylate, Cryst. Growth Des. 10(2010) 4050-4059.

    23. [23]

      [23] W.D. Song, S.J. Li, S.W. Tong, et al., Three new coordination frameworks based on 2-ethyl-imidazole-4,5-dicarboxylate and 1,10-phenanthroline:syntheses, crystal structures, and luminescence, J. Coord. Chem. 65(2012) 3653-3664.

    24. [24]

      [24] S.L. Cai, S.R. Zheng, Z.Z. Wen, J. Fan, W.G. Zhang, A series of new three-dimensional d-f heterometallic coordination polymers with rare 10-connected bct net topology based on planar hexanuclear heterometallic second building units, Cryst. Growth Des. 12(2012) 5737-5745.

    25. [25]

      [25] S.R. Zheng, S.L. Cai, Z.Z. Wen, J. Fan, W.G. Zhang, Structures and properties of five main group coordination polymers based on 2-(pyridin-4-yl)-1H-4,5-imidazoledicarboxylic, Polyhedron 38(2012) 190-197.

    26. [26]

      [26] Z.F. Li, C.J. Chen, L.H. Yan, et al., Three main group metal coordination polymers built by 2-propyl-1H-imidazole-4,5-dicarboxylate, Inorg. Chim. Acta 377(2011) 42-49.

    27. [27]

      [27] S.J. Li, W.D. Song, D.L. Miao, et al., Synthesis, structures, and properties of a series of new coordination polymers built from 2-ethyl-1H-imidazole-4,5-dicarboxylate ligand, Z. Anorg. Allg. Chem. 637(2011) 1246-1252.

    28. [28]

      [28] Y.C. Gao, Q.H. Liu, F.W. Zhang, et al., Three main group metal coordination polymers bearing imidazole-based dicarboxylates:hydro(solvo) thermal syntheses, crystal structures and properties, Polyhedron 30(2011) 1-8.

    29. [29]

      [29] L. Pan, T. Frydel, M.B. Sander, X. Huang, J. Li, The effect of pH on the dimensionality of coordination polymers, Inorg. Chem. 40(2001) 1271-1283.

  • 加载中
    1. [1]

      Muhammad Riaz Rakesh Kumar Gupta Di Sun Mohammad Azam Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427

    2. [2]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    3. [3]

      Yunlong SunWei DingYanhao WangZhening ZhangRuyun WangYinghui GuoZhiyuan GaoHaiyan DuDong Ma . New insight into manganese-enhanced abiotic degradation of microplastics: Processes and mechanisms. Chinese Chemical Letters, 2025, 36(3): 109941-. doi: 10.1016/j.cclet.2024.109941

    4. [4]

      Xi Feng Ding-Yi Hu Zi-Jun Liang Mu-Yang Zhou Zhi-Shuo Wang Wen-Yu Su Rui-Biao Lin Dong-Dong Zhou Jie-Peng Zhang . A metal azolate framework with small aperture for highly efficient ternary benzene/cyclohexene/cyclohexane separation. Chinese Journal of Structural Chemistry, 2025, 44(3): 100540-100540. doi: 10.1016/j.cjsc.2025.100540

    5. [5]

      Jiayu Huang Kuan Chang Qi Liu Yameng Xie Zhijia Song Zhiping Zheng Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097

    6. [6]

      Ze LiuXiaochen ZhangJinlong LuoYingjian Yu . Application of metal-organic frameworks to the anode interface in metal batteries. Chinese Chemical Letters, 2024, 35(11): 109500-. doi: 10.1016/j.cclet.2024.109500

    7. [7]

      Longlong GengHuiling LiuWenfeng ZhouYong-Zheng ZhangHongliang HuangDa-Shuai ZhangHui HuChao LvXiuling ZhangSuijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120

    8. [8]

      Rui WangHe QiHaijiao ZhengQiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215

    9. [9]

      Fereshte Hassanzadeh-AfruziMina AziziIman ZareEhsan Nazarzadeh ZareAnwarul HasanSiavash IravaniPooyan MakvandiYi Xu . Advanced metal-organic frameworks-polymer platforms for accelerated dermal wound healing. Chinese Chemical Letters, 2024, 35(11): 109564-. doi: 10.1016/j.cclet.2024.109564

    10. [10]

      Xinyu WuJianfeng LuZihao ZhuSuijun LiuHerui Wen . Recent advances of metal-organic frameworks and MOF-derived materials based on p-block metal for the electrochemical reduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(7): 110151-. doi: 10.1016/j.cclet.2024.110151

    11. [11]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

    12. [12]

      Fahui XiangLu LiZhen YuanWuji WeiXiaoqing ZhengShimin ChenYisi YangLiangji ChenZizhu YaoJianwei FuZhangjing ZhangShengchang Xiang . Enhanced C2H2/CO2 separation in tetranuclear Cu(Ⅱ) cluster-based metal-organic frameworks by adjusting divider length of pore space partition. Chinese Chemical Letters, 2025, 36(3): 109672-. doi: 10.1016/j.cclet.2024.109672

    13. [13]

      Wenbiao ZhangBolong YangZhonghua Xiang . Atomically dispersed Cu-based metal-organic framework directly for alkaline polymer electrolyte fuel cells. Chinese Chemical Letters, 2025, 36(2): 109630-. doi: 10.1016/j.cclet.2024.109630

    14. [14]

      Changmin LiuYing WangYongqi BaoYuqing Lin . Metal-organic framework mimetic enzymes: Exploring new horizons in brain chemistry. Chinese Chemical Letters, 2025, 36(9): 110652-. doi: 10.1016/j.cclet.2024.110652

    15. [15]

      Xudong ZhaoYuxuan WangXinxin GaoXinli GaoMeihua WangHongliang HuangBaosheng Liu . Anchoring thiol-rich traps in 1D channel wall of metal-organic framework for efficient removal of mercury ions. Chinese Chemical Letters, 2025, 36(2): 109901-. doi: 10.1016/j.cclet.2024.109901

    16. [16]

      Sixiao LiuTianyi WangLei ZhangChengyin WangHuan Pang . Cerium-based metal-organic framework-modified natural mineral vermiculite for photocatalytic nitrogen fixation under visible-light irradiation. Chinese Chemical Letters, 2025, 36(3): 110058-. doi: 10.1016/j.cclet.2024.110058

    17. [17]

      Zhi-Xin LiXiao-Feng QiuPei-Qin Liao . Efficient electroreduction of CO2 to acetate with relative purity of 100% by ultrasmall Cu2O nanoparticle on a conductive metal-organic framework. Chinese Chemical Letters, 2025, 36(11): 110473-. doi: 10.1016/j.cclet.2024.110473

    18. [18]

      Shan-Qing YangLu-Lu WangRajamani KrishnaBo XingLei ZhouFei-Yang ZhangQiang ZhangYi-Long LiChao-Sheng BaoTong-Liang Hu . Efficient C3H6/C3H8 separation within a bifunctional ultramicroporous metal-organic framework with high purity and record packing density. Chinese Chemical Letters, 2025, 36(12): 110556-. doi: 10.1016/j.cclet.2024.110556

    19. [19]

      Xin-Lou YangJieying HuHao ZhongQia-Chun LinZhiqing LinLai-Hon ChungJun He . Building metal-thiolate sites and forming heterojunction in Hf- and Zr-based thiol-dense frameworks towards stable integrated photocatalyst for hydrogen evolution. Chinese Chemical Letters, 2025, 36(7): 110120-. doi: 10.1016/j.cclet.2024.110120

    20. [20]

      Ming YueYi-Rong WangJia-Yong WengJia-Li ZhangDa-Yu ChiMingjin ShiXiao-Gang HuYifa ChenShun-Li LiYa-Qian Lan . Multi-metal porous crystalline materials for electrocatalysis applications. Chinese Chemical Letters, 2025, 36(6): 110049-. doi: 10.1016/j.cclet.2024.110049

Metrics
  • PDF Downloads(0)
  • Abstract views(1154)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return