Citation:
Ren-Bo Wei, Xiao-Gong Wang, Ya-Ning He. Synthesis, self-assembly and photo-responsive behavior of AB2 shaped amphiphilic azo block copolymer[J]. Chinese Chemical Letters,
;2015, 26(7): 857-861.
doi:
10.1016/j.cclet.2015.04.019
-
In this work, we report the synthesis of AB2 shaped amphiphilic azo block copolymer by macromolecular azo coupling reaction. The product and intermediates were characterized by various methods. The selfassembly in selected solvents and photo-responsive behavior of the copolymer were studied bymeans of UV-vis spectrophotometry and TEM. Spherical aggregates can be obtained by gradually adding water into the solution of this amphiphilic azo block copolymer. Upon irradiation with polarized UV (365 nm) light, the aggregates can be elongated in the polarized direction.
-
-
-
[1]
[1] A. Natansohn, P. Rochon, Photoinduced motions in azo-containing polymers, Chem. Rev. 102 (2002) 4139–4175.
-
[2]
[2] T. Seki, Smart photoresponsive polymer systems organized in two dimensions, Bull. Chem. Soc. Jpn. 80 (2007) 2084–2109.
-
[3]
[3] T. Ikeda, J. Mamiya, Y.L. Yu, Photomechanics of liquid-crystalline elastomers and other polymers, Angew. Chem. Int. Ed. 46 (2007) 506–528.
-
[4]
[4] H.F. Yu, T. Ikeda, Photocontrollable liquid-crystalline actuators, Adv. Mater. 23 (2011) 2149–2180.
-
[5]
[5] D.R. Wang, X.G. Wang, Amphiphilic azo polymers: molecular engineering, selfassembly and photoresponsive properties, Prog. Polym. Sci. 38 (2013) 271–301.
-
[6]
[6] Y.N. He, Y. Zhu, Z. Chen, W. He, X.G. Wang, Remote-control photocycloreversion of dithienylethene driven by strong push–pull azo chromophores, Chem. Commun. 49 (2013) 5556–5558.
-
[7]
[7] G. Ye, D.R. Wang, Y.N. He, X.G. Wang, Nunchaku-like molecules containing both an azo chromophore and a biphenylene unit as a new type of high-sensitivity photostorage material, J. Mater. Chem. 20 (2010) 10680–10687.
-
[8]
[8] J. Wu, X.M. Lu, F. Shan, J.F. Guan, Q.H. Lu, Photoresponding ionic complex containing azobenzene chromophore for use in birefringent film, Chin. Chem. Lett. 25 (2014) 15–18.
-
[9]
[9] M.L. Rahman, G. Hegde, S.M. Sarkar, M.M. Yusoff, Synthesis and photoswitching properties of azobenzene liquid crystals with a pentafluorobenzene terminal, Chin. Chem. Lett. 25 (2014) 1611–1614.
-
[10]
[10] R.B. Wei, Y.N. He, X.G. Wang, Diblock copolymers composed of a liquid crystalline azo block and a poly(dimethylsiloxane) block: synthesis, morphology and photoresponsive properties, RSC Adv. 4 (2014) 58386–58396.
-
[11]
[11] T. Ikeda, S. Horiuchi, D.B. Karanjit, S. Kurihara, S. Tazuke, Photochemically induced isothermal phase-transition in polymer liquid-crystals with mesogenic phenyl benzonate side-chains. 2: Photochemically induced isothermal phase-transition behaviors, Macromolecules 23 (1990) 42–48.
-
[12]
[12] M.C. Guo, Y.N. He, X.G. Wang, Effects of azo polymer structures and surface-relief grating parameters on liquid crystal alignment behavior, Acta Polym. Sin. 12 (2013) 1501–1507.
-
[13]
[13] Y.N. He, H.F. Ren, L. Shi, X.G. Wang, Surface relief gratings used as liquid crystal alignment layer, Acta Polym. Sin. 4 (2004) 617–619.
-
[14]
[14] M.C. Guo, Z.D. Xu, X.G.Wang, Photofabrication of two-dimensional quasi-crystal patterns on UV-curable molecular azo glass films, Langmuir 24 (2008) 2740– 2745.
-
[15]
[15] C. Hubert, C. Fiorini-Debuisschert, I. Maurin, J.M. Nunzi, P. Raimond, Spontaneous patterning of hexagonal structures in an azo-polymer using light-controlled mass transport, Adv. Mater. 14 (2002) 729–732.
-
[16]
[16] H. Finkelmann, E. Nishikawa, G.G. Pereira, M. Warner, A new opto-mechanical effect in solids, Phys. Rev. Lett. 87 (2001), 015501.
-
[17]
[17] M.H. Li, P. Keller, B. Li, X.G. Wang, M. Brunet, Light-driven side-on nematic elastomer actuators, Adv. Mater. 15 (2003) 569–572.
-
[18]
[18] Y.L. Yu, M. Nakano, T. Ikeda, Directed bending of a polymer film by light: Miniaturizing a simple photomechanical system could expand its range of applications, Nature 425 (2003) 145.
-
[19]
[19] Y. Zhao, Light-responsive block copolymer micelles, Macromolecules 45 (2012) 3647–3657.
-
[20]
[20] Y.B. Li, Y.N. He, X.L. Tong, X.G. Wang, Photoinduced deformation of amphiphilic azo polymer colloidal spheres, J. Am. Chem. Soc. 127 (2005) 2402–2403.
-
[21]
[21] Y.N. Ye, P.Y. Li, Y.G. Shangguan, et al., A convenient, highly-efficient method for preparation of hydroxyl-terminated isotactic poly(propylene) and functional diblock copolymer, Chin. Chem. Lett. 25 (2014) 596–600.
-
[22]
[22] Z. Chen, Y.N. He, Y. Wang, X.G. Wang, Amphiphilic diblock copolymer with dithienylethene pendants: synthesis and photo-modulated self-assembly, Macromol. Rapid Commun. 32 (2011) 977–982.
-
[23]
[23] J. Jiang, X. Tong, Y. Zhao, A new design for light-breakable polymer micelles, J. Am. Chem. Soc. 127 (2005) 8290–8921.
-
[24]
[24] C. Tonhauser, B. Obermeier, C. Mangold, H. Löwe, H. Frey, Introducing an amine functionality at the block junction of amphiphilic block copolymers by anionic polymerization strategies, Chem. Commun. 47 (2011) 8964–8966.
-
[25]
[25] J.M. Spruell, C.J. Hawker, Triggered structural and property changes in polymeric nanomaterials, Chem. Sci. 2 (2011) 18–26.
-
[26]
[26] Y.Y. Wang, S.L. Lin, M.H. Zang, et al., Self-assembly and photo-responsive behavior of novel ABC2-type block copolymers containing azobenzene moieties, Soft Matter 8 (2012) 3131–3138.
-
[27]
[27] C. Jin, T.R. Zhang, L.Y. Wang, et al., Photoinduced deformation of hollow nanospheres formed by the self-assembly of amphiphilic random copolymers and small azo molecules, RSC Adv. 4 (2014) 45890–45894.
-
[28]
[28] E. Blasco, J.L. Serrano, M. Piñol, L. Oriol, Light responsive vesicles based on lineardendritic block copolymers using azobenzene-aliphatic codendrons, Macromolecules 46 (2013) 5951–5960.
-
[29]
[29] Y. Liu, C.Y. Yu, H.B. Jin, et al., A supramolecular Janus hyperbranched polymer and its photoresponsive self-assembly of vesicles with narrow size distribution, J. Am. Chem. Soc. 135 (2013) 4765–4770.
-
[30]
[30] N. Li, G. Ye, Y.N. He, X.G. Wang, Hollow microspheres of amphiphilic azo homopolymers: self-assembly and photoinduced deformation behavior, Chem. Commun. 47 (2011) 4757–4759.
-
[31]
[31] Y.H. Deng, N. Li, Y.N. He, X.G. Wang, Hybrid colloids composed of two amphiphilic azo polymers: fabrication, characterization, and photoresponsive properties, Macromolecules 40 (2007) 669–6678.
-
[32]
[32] J.P. Liu, Y.N. He, X.G.Wang, Influence of chromophoric electron-withdrawing groups on photoinduced deformation of azo polymer colloids, Polymer 51 (2010) 2879–2886.
-
[33]
[33] J.P. Liu, Y.N. He, X.G. Wang, Fabrication of bowl-shaped aggregates of azo polymer and their photoinduced deformation behavior, Acta Polym. Sin. 11 (2010) 1294–1298.
-
[34]
[34] J.P. Liu, Y.N. He, X.G. Wang, Size-dependent light-driven effect observed for azo polymer colloidal sphere with different average diameters, Langmuir 25 (2009) 5974–5979.
-
[35]
[35] Y. Cai, Y. Tang, S.P. Armes, Direct synthesis and stimulus-responsive micellization of Y-shaped hydrophilic block copolymers, Macromolecules 37 (2004) 9728–9737.
-
[36]
[36] J.L.Wang, Y.Q. Zhou,X.G.Wang, Y.N.He, Synthesis of Y-shaped amphiphilic copolymers by macromolecular azo coupling reaction, RSC Adv. 5 (2015) 9476–9481.
-
[37]
[37] Y.N. He, W. He, R.B. Wei, Z. Chen, X.G. Wang, Synthesizing amphiphilic block copolymers through macromolecular azo-coupling reaction, Chem. Commun. 48 (2012) 1036–1038.
-
[38]
[38] Y.N.He,W. He, D. Liu, et al., Synthesis of block copolymers via the combination of RAFT and a macromolecular azo coupling reaction, Polym. Chem. 4 (2013) 402–406.
-
[1]
-
-
-
[1]
Yuanpeng Ye , Longfei Yao , Guofeng Liu . Engineering circularly polarized luminescence through symmetry manipulation in achiral tetraphenylpyrazine structures. Chinese Journal of Structural Chemistry, 2025, 44(2): 100460-100460. doi: 10.1016/j.cjsc.2024.100460
-
[2]
Sifan Du , Yuan Wang , Fulin Wang , Tianyu Wang , Li Zhang , Minghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256
-
[3]
Hao Zhang , Hao Liu , Ke Huang , Qingxiu Xia , Hongjie Xiong , Xiaohui Liu , Hui Jiang , Xuemei Wang . Ionic exchange based intracellular self-assembly of pitaya-structured nanoparticles for tumor imaging. Chinese Chemical Letters, 2025, 36(6): 110281-. doi: 10.1016/j.cclet.2024.110281
-
[4]
Xuanyu Wang , Zhao Gao , Wei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757
-
[5]
Weibin Shen , Jie Liu , Gongyu Wen , Shuai Li , Binhui Yu , Shuangyu Song , Bojie Gong , Rongyang Zhang , Shibao Liu , Hongpeng Wang , Yao Wang , Yujing Liu , Huadong Yuan , Jianming Luo , Shihui Zou , Xinyong Tao , Jianwei Nai . Formation of FeNi-based nanowire-assembled superstructures with tunable anions for electrocatalytic oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(7): 110184-. doi: 10.1016/j.cclet.2024.110184
-
[6]
Yuwen Zhu , Xiang Deng , Yan Wu , Baode Shen , Lingyu Hang , Yuye Xue , Hailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733
-
[7]
Shengyong Liu , Hui Li , Wei Zhang , Yan Zhang , Yan Dong , Wei Tian . Multiple host-guest and metal coordination interactions induce supramolecular assembly and structural transition. Chinese Chemical Letters, 2025, 36(6): 110465-. doi: 10.1016/j.cclet.2024.110465
-
[8]
Jingqi Xin , Shupeng Han , Meichen Zheng , Chenfeng Xu , Zhongxi Huang , Bin Wang , Changmin Yu , Feifei An , Yu Ren . A nitroreductase-responsive nanoprobe with homogeneous composition and high loading for preoperative non-invasive tumor imaging and intraoperative guidance. Chinese Chemical Letters, 2024, 35(7): 109165-. doi: 10.1016/j.cclet.2023.109165
-
[9]
Keyang Li , Yanan Wang , Yatao Xu , Guohua Shi , Sixian Wei , Xue Zhang , Baomei Zhang , Qiang Jia , Huanhua Xu , Liangmin Yu , Jun Wu , Zhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511
-
[10]
Xian Yan , Huawei Xie , Gao Wu , Fang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279
-
[11]
Feng Cao , Chunxiang Xian , Tianqi Yang , Yue Zhang , Haifeng Chen , Xinping He , Xukun Qian , Shenghui Shen , Yang Xia , Wenkui Zhang , Xinhui Xia . Gelation-pyrolysis strategy for fabrication of advanced carbon/sulfur cathodes for lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 110575-. doi: 10.1016/j.cclet.2024.110575
-
[12]
Fengying Ye , Ming Hu , Jun Luo , Wei Yu , Zhirong Xu , Jinjin Fu , Yansong Zheng . Significantly boosting circularly polarized luminescence by synergy of helical and planar chirality. Chinese Chemical Letters, 2025, 36(5): 110724-. doi: 10.1016/j.cclet.2024.110724
-
[13]
Xingyue Yuan , Li Wu , Qiuyu Peng , Yanyan Tang , Mingxu Wang , Yuhang Wei , Zhu Tao , Xin Xiao . Developing color-tunable long afterglow anti-counterfeiting materials using cucurbit[6]uril and classical aggregation-caused quenching compounds through multiple non-covalent interactions. Chinese Chemical Letters, 2025, 36(9): 110821-. doi: 10.1016/j.cclet.2025.110821
-
[14]
Shuwen Guo , Haipeng Xu , Zijun Cheng , Leyong Wang , Peng Yang , Ruibing Wang . Efficient cytosolic delivery of protein by preorganized amidiniums on pillar[5]arene. Chinese Chemical Letters, 2025, 36(10): 111022-. doi: 10.1016/j.cclet.2025.111022
-
[15]
Qunpeng Duan , Qiaona Zhang , Jiayuan Zhang , Shihao Lin , Tangxin Xiao , Leyong Wang . Artificial light-harvesting systems based on supramolecular polymers ✩. Chinese Chemical Letters, 2025, 36(12): 111421-. doi: 10.1016/j.cclet.2025.111421
-
[16]
Zerong Pei , Suyun Hu , Huimin Wei , Liqin Ding , Jingbo Liu , Fengyun Li , Hongyu Chen . Multifunctional carrier-free nanodrugs for enhanced delivery and efficacy of hydrophobic antitumor drugs. Chinese Chemical Letters, 2026, 37(1): 110981-. doi: 10.1016/j.cclet.2025.110981
-
[17]
He Zhao , Qiangqiang Dong , Fengxue Liu , Ning Wang , Lijun Wang , Mingzhao Chen , Zhilong Jiang , Die Liu , Jun Wang , Pingshan Wang , Yiming Li . Dovetail joint strategy for constructing giant multi-propeller supramolecular architectures. Chinese Chemical Letters, 2026, 37(2): 112051-. doi: 10.1016/j.cclet.2025.112051
-
[18]
Yilei Zhao , Guoxin Zhu , Xuechun Wang , Zilin Ma , Jie Yan , Songyan Li , Wen Zhao , Qingbin He , Jianwei Jiao , Guiqiang Zhang . In situ carrier-free nanovaccines reversing the immunosuppressive microenvironment for boosting tumor immunotherapy. Chinese Chemical Letters, 2026, 37(2): 111031-. doi: 10.1016/j.cclet.2025.111031
-
[19]
Changlin Su , Wensheng Cai , Xueguang Shao . Water as a probe for the temperature-induced self-assembly transition of an amphiphilic copolymer. Chinese Chemical Letters, 2025, 36(4): 110095-. doi: 10.1016/j.cclet.2024.110095
-
[20]
Bing Niu , Honggao Huang , Liwei Luo , Li Zhang , Jianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(1312)
- HTML views(35)
Login In
DownLoad: