Citation: Ren-Bo Wei, Xiao-Gong Wang, Ya-Ning He. Synthesis, self-assembly and photo-responsive behavior of AB2 shaped amphiphilic azo block copolymer[J]. Chinese Chemical Letters, ;2015, 26(7): 857-861. doi: 10.1016/j.cclet.2015.04.019 shu

Synthesis, self-assembly and photo-responsive behavior of AB2 shaped amphiphilic azo block copolymer

  • Corresponding author: Ya-Ning He, 
  • Received Date: 6 March 2015
    Available Online: 25 March 2015

    Fund Project: This work was supported by the National Natural Science Foundation of China (No. 21474056). (No. 21474056)

  • In this work, we report the synthesis of AB2 shaped amphiphilic azo block copolymer by macromolecular azo coupling reaction. The product and intermediates were characterized by various methods. The selfassembly in selected solvents and photo-responsive behavior of the copolymer were studied bymeans of UV-vis spectrophotometry and TEM. Spherical aggregates can be obtained by gradually adding water into the solution of this amphiphilic azo block copolymer. Upon irradiation with polarized UV (365 nm) light, the aggregates can be elongated in the polarized direction.
  • 加载中
    1. [1]

      [1] A. Natansohn, P. Rochon, Photoinduced motions in azo-containing polymers, Chem. Rev. 102 (2002) 4139–4175.

    2. [2]

      [2] T. Seki, Smart photoresponsive polymer systems organized in two dimensions, Bull. Chem. Soc. Jpn. 80 (2007) 2084–2109.

    3. [3]

      [3] T. Ikeda, J. Mamiya, Y.L. Yu, Photomechanics of liquid-crystalline elastomers and other polymers, Angew. Chem. Int. Ed. 46 (2007) 506–528.

    4. [4]

      [4] H.F. Yu, T. Ikeda, Photocontrollable liquid-crystalline actuators, Adv. Mater. 23 (2011) 2149–2180.

    5. [5]

      [5] D.R. Wang, X.G. Wang, Amphiphilic azo polymers: molecular engineering, selfassembly and photoresponsive properties, Prog. Polym. Sci. 38 (2013) 271–301.

    6. [6]

      [6] Y.N. He, Y. Zhu, Z. Chen, W. He, X.G. Wang, Remote-control photocycloreversion of dithienylethene driven by strong push–pull azo chromophores, Chem. Commun. 49 (2013) 5556–5558.

    7. [7]

      [7] G. Ye, D.R. Wang, Y.N. He, X.G. Wang, Nunchaku-like molecules containing both an azo chromophore and a biphenylene unit as a new type of high-sensitivity photostorage material, J. Mater. Chem. 20 (2010) 10680–10687.

    8. [8]

      [8] J. Wu, X.M. Lu, F. Shan, J.F. Guan, Q.H. Lu, Photoresponding ionic complex containing azobenzene chromophore for use in birefringent film, Chin. Chem. Lett. 25 (2014) 15–18.

    9. [9]

      [9] M.L. Rahman, G. Hegde, S.M. Sarkar, M.M. Yusoff, Synthesis and photoswitching properties of azobenzene liquid crystals with a pentafluorobenzene terminal, Chin. Chem. Lett. 25 (2014) 1611–1614.

    10. [10]

      [10] R.B. Wei, Y.N. He, X.G. Wang, Diblock copolymers composed of a liquid crystalline azo block and a poly(dimethylsiloxane) block: synthesis, morphology and photoresponsive properties, RSC Adv. 4 (2014) 58386–58396.

    11. [11]

      [11] T. Ikeda, S. Horiuchi, D.B. Karanjit, S. Kurihara, S. Tazuke, Photochemically induced isothermal phase-transition in polymer liquid-crystals with mesogenic phenyl benzonate side-chains. 2: Photochemically induced isothermal phase-transition behaviors, Macromolecules 23 (1990) 42–48.

    12. [12]

      [12] M.C. Guo, Y.N. He, X.G. Wang, Effects of azo polymer structures and surface-relief grating parameters on liquid crystal alignment behavior, Acta Polym. Sin. 12 (2013) 1501–1507.

    13. [13]

      [13] Y.N. He, H.F. Ren, L. Shi, X.G. Wang, Surface relief gratings used as liquid crystal alignment layer, Acta Polym. Sin. 4 (2004) 617–619.

    14. [14]

      [14] M.C. Guo, Z.D. Xu, X.G.Wang, Photofabrication of two-dimensional quasi-crystal patterns on UV-curable molecular azo glass films, Langmuir 24 (2008) 2740– 2745.

    15. [15]

      [15] C. Hubert, C. Fiorini-Debuisschert, I. Maurin, J.M. Nunzi, P. Raimond, Spontaneous patterning of hexagonal structures in an azo-polymer using light-controlled mass transport, Adv. Mater. 14 (2002) 729–732.

    16. [16]

      [16] H. Finkelmann, E. Nishikawa, G.G. Pereira, M. Warner, A new opto-mechanical effect in solids, Phys. Rev. Lett. 87 (2001), 015501.

    17. [17]

      [17] M.H. Li, P. Keller, B. Li, X.G. Wang, M. Brunet, Light-driven side-on nematic elastomer actuators, Adv. Mater. 15 (2003) 569–572.

    18. [18]

      [18] Y.L. Yu, M. Nakano, T. Ikeda, Directed bending of a polymer film by light: Miniaturizing a simple photomechanical system could expand its range of applications, Nature 425 (2003) 145.

    19. [19]

      [19] Y. Zhao, Light-responsive block copolymer micelles, Macromolecules 45 (2012) 3647–3657.

    20. [20]

      [20] Y.B. Li, Y.N. He, X.L. Tong, X.G. Wang, Photoinduced deformation of amphiphilic azo polymer colloidal spheres, J. Am. Chem. Soc. 127 (2005) 2402–2403.

    21. [21]

      [21] Y.N. Ye, P.Y. Li, Y.G. Shangguan, et al., A convenient, highly-efficient method for preparation of hydroxyl-terminated isotactic poly(propylene) and functional diblock copolymer, Chin. Chem. Lett. 25 (2014) 596–600.

    22. [22]

      [22] Z. Chen, Y.N. He, Y. Wang, X.G. Wang, Amphiphilic diblock copolymer with dithienylethene pendants: synthesis and photo-modulated self-assembly, Macromol. Rapid Commun. 32 (2011) 977–982.

    23. [23]

      [23] J. Jiang, X. Tong, Y. Zhao, A new design for light-breakable polymer micelles, J. Am. Chem. Soc. 127 (2005) 8290–8921.

    24. [24]

      [24] C. Tonhauser, B. Obermeier, C. Mangold, H. Löwe, H. Frey, Introducing an amine functionality at the block junction of amphiphilic block copolymers by anionic polymerization strategies, Chem. Commun. 47 (2011) 8964–8966.

    25. [25]

      [25] J.M. Spruell, C.J. Hawker, Triggered structural and property changes in polymeric nanomaterials, Chem. Sci. 2 (2011) 18–26.

    26. [26]

      [26] Y.Y. Wang, S.L. Lin, M.H. Zang, et al., Self-assembly and photo-responsive behavior of novel ABC2-type block copolymers containing azobenzene moieties, Soft Matter 8 (2012) 3131–3138.

    27. [27]

      [27] C. Jin, T.R. Zhang, L.Y. Wang, et al., Photoinduced deformation of hollow nanospheres formed by the self-assembly of amphiphilic random copolymers and small azo molecules, RSC Adv. 4 (2014) 45890–45894.

    28. [28]

      [28] E. Blasco, J.L. Serrano, M. Piñol, L. Oriol, Light responsive vesicles based on lineardendritic block copolymers using azobenzene-aliphatic codendrons, Macromolecules 46 (2013) 5951–5960.

    29. [29]

      [29] Y. Liu, C.Y. Yu, H.B. Jin, et al., A supramolecular Janus hyperbranched polymer and its photoresponsive self-assembly of vesicles with narrow size distribution, J. Am. Chem. Soc. 135 (2013) 4765–4770.

    30. [30]

      [30] N. Li, G. Ye, Y.N. He, X.G. Wang, Hollow microspheres of amphiphilic azo homopolymers: self-assembly and photoinduced deformation behavior, Chem. Commun. 47 (2011) 4757–4759.

    31. [31]

      [31] Y.H. Deng, N. Li, Y.N. He, X.G. Wang, Hybrid colloids composed of two amphiphilic azo polymers: fabrication, characterization, and photoresponsive properties, Macromolecules 40 (2007) 669–6678.

    32. [32]

      [32] J.P. Liu, Y.N. He, X.G.Wang, Influence of chromophoric electron-withdrawing groups on photoinduced deformation of azo polymer colloids, Polymer 51 (2010) 2879–2886.

    33. [33]

      [33] J.P. Liu, Y.N. He, X.G. Wang, Fabrication of bowl-shaped aggregates of azo polymer and their photoinduced deformation behavior, Acta Polym. Sin. 11 (2010) 1294–1298.

    34. [34]

      [34] J.P. Liu, Y.N. He, X.G. Wang, Size-dependent light-driven effect observed for azo polymer colloidal sphere with different average diameters, Langmuir 25 (2009) 5974–5979.

    35. [35]

      [35] Y. Cai, Y. Tang, S.P. Armes, Direct synthesis and stimulus-responsive micellization of Y-shaped hydrophilic block copolymers, Macromolecules 37 (2004) 9728–9737.

    36. [36]

      [36] J.L.Wang, Y.Q. Zhou,X.G.Wang, Y.N.He, Synthesis of Y-shaped amphiphilic copolymers by macromolecular azo coupling reaction, RSC Adv. 5 (2015) 9476–9481.

    37. [37]

      [37] Y.N. He, W. He, R.B. Wei, Z. Chen, X.G. Wang, Synthesizing amphiphilic block copolymers through macromolecular azo-coupling reaction, Chem. Commun. 48 (2012) 1036–1038.

    38. [38]

      [38] Y.N.He,W. He, D. Liu, et al., Synthesis of block copolymers via the combination of RAFT and a macromolecular azo coupling reaction, Polym. Chem. 4 (2013) 402–406.

  • 加载中
    1. [1]

      Yuanpeng Ye Longfei Yao Guofeng Liu . Engineering circularly polarized luminescence through symmetry manipulation in achiral tetraphenylpyrazine structures. Chinese Journal of Structural Chemistry, 2025, 44(2): 100460-100460. doi: 10.1016/j.cjsc.2024.100460

    2. [2]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    3. [3]

      Xuanyu WangZhao GaoWei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757

    4. [4]

      Yuwen ZhuXiang DengYan WuBaode ShenLingyu HangYuye XueHailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733

    5. [5]

      Jingqi XinShupeng HanMeichen ZhengChenfeng XuZhongxi HuangBin WangChangmin YuFeifei AnYu Ren . A nitroreductase-responsive nanoprobe with homogeneous composition and high loading for preoperative non-invasive tumor imaging and intraoperative guidance. Chinese Chemical Letters, 2024, 35(7): 109165-. doi: 10.1016/j.cclet.2023.109165

    6. [6]

      Keyang LiYanan WangYatao XuGuohua ShiSixian WeiXue ZhangBaomei ZhangQiang JiaHuanhua XuLiangmin YuJun WuZhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511

    7. [7]

      Xian YanHuawei XieGao WuFang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279

    8. [8]

      Feng CaoChunxiang XianTianqi YangYue ZhangHaifeng ChenXinping HeXukun QianShenghui ShenYang XiaWenkui ZhangXinhui Xia . Gelation-pyrolysis strategy for fabrication of advanced carbon/sulfur cathodes for lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 110575-. doi: 10.1016/j.cclet.2024.110575

    9. [9]

      Changlin SuWensheng CaiXueguang Shao . Water as a probe for the temperature-induced self-assembly transition of an amphiphilic copolymer. Chinese Chemical Letters, 2025, 36(4): 110095-. doi: 10.1016/j.cclet.2024.110095

    10. [10]

      Bing NiuHonggao HuangLiwei LuoLi ZhangJianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431

    11. [11]

      Yu-Hang MiaoZheng-Xu ZhangXu-Yi HuangYuan-Zhao HuaShi-Kun JiaXiao XiaoMin-Can WangLi-Ping XuGuang-Jian Mei . Catalytic asymmetric dearomative azo-Diels–Alder reaction of 2-vinlyindoles. Chinese Chemical Letters, 2024, 35(4): 108830-. doi: 10.1016/j.cclet.2023.108830

    12. [12]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    13. [13]

      Cheng-Yan WuYi-Nan GaoZi-Han ZhangRui LiuQuan TangZhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649

    14. [14]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    15. [15]

      Zengchao GuoWeiwei LiuTengfei LiuJinpeng WangHui JiangXiaohui LiuYossi WeizmannXuemei Wang . Engineered exosome hybrid copper nanoscale antibiotics facilitate simultaneous self-assembly imaging and elimination of intracellular multidrug-resistant superbugs. Chinese Chemical Letters, 2024, 35(7): 109060-. doi: 10.1016/j.cclet.2023.109060

    16. [16]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    17. [17]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    18. [18]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    19. [19]

      Yi ZhouWei ZhangRong FuJiaxin DongYuxuan LiuZihang SongHan HanKang Cai . Self-assembly of two pairs of homochiral M2L4 coordination capsules with varied confined space using Tröger's base ligands. Chinese Chemical Letters, 2025, 36(2): 109865-. doi: 10.1016/j.cclet.2024.109865

    20. [20]

      Yiwen LinYijie ChenChunhui DengNianrong Sun . Integration of resol/block-copolymer carbonization and machine learning: A convenient approach for precise monitoring of glycan-associated disorders. Chinese Chemical Letters, 2024, 35(12): 109813-. doi: 10.1016/j.cclet.2024.109813

Metrics
  • PDF Downloads(0)
  • Abstract views(688)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return