Citation: Xuchen Huang, Yanbin Huang. Solubilization of organic compounds by arginine-derived polymers[J]. Chinese Chemical Letters, ;2015, 26(6): 636-640. doi: 10.1016/j.cclet.2015.04.009 shu

Solubilization of organic compounds by arginine-derived polymers

  • Corresponding author: Yanbin Huang, 
  • Received Date: 27 January 2015
    Available Online: 1 April 2015

    Fund Project: This study is supported by the Natural Science Foundation of China (No. 21434008). (No. 21434008)

  • Poor aqueous solubility of drugs is one of the major challenges in the pharmaceutical science. In this study, a guanidinium-containing polymer based on arginine was designed and synthesized, and was evaluated as a solubility enhancing additive for three model organic compounds (coumarin, pyrene and doxorubicin). At a guanidinium group concentration of 100 mmol/L, the polymer could significantly increase the solubility of pyrene and doxorubicin by 6-and 11-fold respectively, much more effective than arginine (2-and 3-fold, respectively). In contrast, its effect on the solubility of coumarin was less effective than arginine. The solubilizing effect may be explained by the enhanced interaction between the guanidinium group in the polymer and the aromatic compounds.
  • 加载中
    1. [1]

      [1] L. Di, E.H. Kerns, G.T. Carter, Drug-like property concepts in pharmaceutical design, Curr. Pharm. Des. 15 (2009) 2184-2194.

    2. [2]

      [2] T. Takagi, C. Ramachandran, M. Bermejo, et al., A provisional biopharmaceutical classification of the top 200 oral drug products in the United States, Great Britain, Spain, and Japan, Mol. Pharm. 3 (2006) 631-643.

    3. [3]

      [3] Y.B. Huang, W.G. Dai, Fundamental aspects of solid dispersion technology for poorly soluble drugs, Acta Pharm. Sin. B 4 (2014) 18-25.

    4. [4]

      [4] Y. Zhang, M.Y. Xu, T.K. Jiang, W.Z. Huang, J.Y. Wu, Low generational polyamidoamine dendrimers to enhance the solubility of folic acid: a "dendritic effect" investigation, Chin. Chem. Lett. 25 (2014) 815-818.

    5. [5]

      [5] L. Wang, L.L. Li, H.L. Ma, H. Wang, Recent advances in biocompatible supramolecular assemblies for biomolecular detection and delivery, Chin. Chem. Lett. 24 (2013) 351-358.

    6. [6]

      [6] H.R. Guzman, M. Tawa, Z. Zhang, et al., Combined use of crystalline salt forms and precipitation inhibitors to improve oral absorption of celecoxib from solid oral formulations, J. Pharm. Sci. 96 (2007) 2686-2702.

    7. [7]

      [7] K.A. Schug, W. Lindner, Noncovalent binding between guanidinium and anionic groups: focus on biological-and synthetic-based arginine/guanidinium interactions with phosph[on]ate and sulf[on]ate residues, Chem. Rev. 105 (2005) 67-114.

    8. [8]

      [8] N. Sakai, S. Matile, Anion-mediated transfer of polyarginine across liquid and bilayer membranes, J. Am. Chem. Soc. 125 (2003) 14348-14356.

    9. [9]

      [9] T. Arakawa, Y. Kita, A.H. Koyama, Solubility enhancement of gluten and organic compounds by arginine, Int. J. Pharm. 355 (2008) 220-223.

    10. [10]

      [10] A. Hirano, T. Kameda, T. Arakawa, K. Shiraki, Arginine-assisted solubilization system for drug substances: solubility experiment and simulation, J. Phys. Chem. B 114 (2010) 13455-13462.

    11. [11]

      [11] D. Shukla, B.L. Trout, Interaction of arginine with proteins and the mechanism by which it inhibits aggregation, J. Phys. Chem. B 114 (2010) 13426-13438.

    12. [12]

      [12] P.E. Mason, G.W. Neilson, J.E. Enderby, et al., The structure of aqueous guanidinium chloride solutions, J. Am. Chem. Soc. 126 (2004) 11462-11470.

    13. [13]

      [13] J.G. Li, M. Garg, D. Shah, R. Rajagopalan, Solubilization of aromatic and hydrophobic moieties by arginine in aqueous solutions, J. Chem. Phys. 133 (2010) 054902.

    14. [14]

      [14] K. Tsumoto, M. Umetsu, I. Kumagai, et al., Role of arginine in protein refolding, solubilization, and purification, Biotechnol. Prog. 20 (2004) 1301-1308.

    15. [15]

      [15] B.M. Baynes, D.I.C. Wang, B.L. Trout, Role of arginine in the stabilization of proteins against aggregation, Biochemistry 44 (2005) 4919-4925.

    16. [16]

      [16] U. Das, G. Hariprasad, A.S. Ethayathulla, et al., Inhibition of protein aggregation: supramolecular assemblies of arginine hold the key, PLoS One 11 (2007) e1176.

    17. [17]

      [17] J. Arakawa, M. Uegaki, T. Ishimizu, Effects of L-arginine on solubilization and purification of plant membrane proteins, Protein Expr. Purif. 80 (2011) 91-96.

    18. [18]

      [18] M.M. Varughese, J. Newman, Inhibitory effects of arginine on the aggregation of bovine insulin, J. Biophys. 2012 (2012) 434289.

    19. [19]

      [19] D.X. Zhao, Z.X. Huang, Effect of arginine on stability of GST-ZNF191 (243-368), Chin. Chem. Lett. 18 (2007) 355-356.

    20. [20]

      [20] A. Hirano, T. Arakawa, K. Shiraki, Arginine increases the solubility of coumarin: comparison with salting-in and salting-out additives, J. Biochem. 144 (2008) 363-369.

    21. [21]

      [21] J.G. Cheng, X.M. Luo, X.H. Yan, et al., Research progress in cation-p interactions, Sci. China Ser. B: Chem. 51 (2008) 709-717.

    22. [22]

      [22] Y. Kim, S. Binauld, M.H. Stenzel, Zwitterionic guanidine-based oligomers mimicking cell-penetrating peptides as a nontoxic alternative to cationic polymers to enhance the cellular uptake of micelles, Biomacromolecule 13 (2012) 3418-3426.

    23. [23]

      [23] Z.L. Luo, G.Z. Zhang, Scaling for sedimentation and diffusion of poly(ethylene glycol) in water, J. Phys. Chem. B 113 (2009) 12462-12465.

    24. [24]

      [24] L.C. Cartwright, Vanilla-like synthetics, solubility and volatility of propenyl guaethyl, bourbonal, vanillin, and coumarin, J. Agric. Food Chem. 1 (1953) 312-314.

    25. [25]

      [25] D. Mackay, W.Y. Shiu, Aqueous solubility of polynuclear aromatic hydrocarbons, J. Chem. Eng. Data 22 (1977) 399-402.

  • 加载中
    1. [1]

      Shuai QiuJia HeXiao HuHongxia YanZhao GaoWei Tian . Cation-π enhanced triplet-to-singlet Förster resonance energy transfer for fluorescence afterglow. Chinese Chemical Letters, 2025, 36(4): 110057-. doi: 10.1016/j.cclet.2024.110057

    2. [2]

      Linghui ZouMeng ChengKaili HuJianfang FengLiangxing Tu . Vesicular drug delivery systems for oral absorption enhancement. Chinese Chemical Letters, 2024, 35(7): 109129-. doi: 10.1016/j.cclet.2023.109129

    3. [3]

      Fengjie LiuFansu MengZhenjiang YangHuan WangYuehong RenYu CaiXingwang Zhang . Exosome-biomimetic nanocarriers for oral drug delivery. Chinese Chemical Letters, 2024, 35(9): 109335-. doi: 10.1016/j.cclet.2023.109335

    4. [4]

      Zhibin RenShan LiXiaoying LiuGuanghao LvLei ChenJingli WangXingyi LiJiaqing Wang . Penetrating efficiency of supramolecular hydrogel eye drops: Electrostatic interaction surpasses ligand-receptor interaction. Chinese Chemical Letters, 2024, 35(11): 109629-. doi: 10.1016/j.cclet.2024.109629

    5. [5]

      Cheng WangJi WangDong LiuZhi-Ling Zhang . Advances in virus-host interaction research based on microfluidic platforms. Chinese Chemical Letters, 2024, 35(12): 110302-. doi: 10.1016/j.cclet.2024.110302

    6. [6]

      Yujie LiYa-Nan WangYin-Gen LuoHongcai YangJinrui RenXiao Li . Advances in synthetic biology-based drug delivery systems for disease treatment. Chinese Chemical Letters, 2024, 35(11): 109576-. doi: 10.1016/j.cclet.2024.109576

    7. [7]

      Shaoqing DuXinyong LiuXueping HuPeng Zhan . Targeting novel sites represents an effective strategy for combating drug resistance. Chinese Chemical Letters, 2025, 36(1): 110378-. doi: 10.1016/j.cclet.2024.110378

    8. [8]

      Qijie GongJian SongYihui SongKai TangPanpan YangXiao WangMin ZhaoLiang OuyangLi RaoBin YuPeng ZhanSaiyang ZhangXiaojin Zhang . New techniques and strategies in drug discovery (2020–2024 update). Chinese Chemical Letters, 2025, 36(3): 110456-. doi: 10.1016/j.cclet.2024.110456

    9. [9]

      Yuan DongMutian MaZhenyang JiaoSheng HanLikun XiongZhao DengYang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049

    10. [10]

      Yinghui Xia Yixi Lin Zhenming Xu . Cation potential guiding structural regulation of lithium halide superionic conductors. Chinese Journal of Structural Chemistry, 2025, 44(3): 100448-100448. doi: 10.1016/j.cjsc.2024.100448

    11. [11]

      Jinli Chen Shouquan Feng Tianqi Yu Yongjin Zou Huan Wen Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168

    12. [12]

      Ningyue XuJun WangLei LiuChangyang Gong . Injectable hydrogel-based drug delivery systems for enhancing the efficacy of radiation therapy: A review of recent advances. Chinese Chemical Letters, 2024, 35(8): 109225-. doi: 10.1016/j.cclet.2023.109225

    13. [13]

      Yihan ZhouDuo GaoYaying WangLi LiangQingyu ZhangWenwen HanJie WangChunliu ZhuXinxin ZhangYong Gan . Worm-like micelles facilitate the intestinal mucus diffusion and drug accumulation for enhancing colorectal cancer therapy. Chinese Chemical Letters, 2024, 35(6): 108967-. doi: 10.1016/j.cclet.2023.108967

    14. [14]

      Xin ZhangJunyu ChenXiang PeiLinxin YangLiang WangLuona ChenGuangmei YangXibo PeiQianbing WanJian Wang . Drug-loading ZIF-8 for modification of microporous bone scaffold to promote vascularized bone regeneration. Chinese Chemical Letters, 2024, 35(6): 108889-. doi: 10.1016/j.cclet.2023.108889

    15. [15]

      Liping ZhaoXixi GuoZhimeng ZhangXi LuQingxuan ZengTianyun FanXintong ZhangFenbei ChenMengyi XuMin YuanZhenjun LiJiandong JiangJing PangXuefu YouYanxiang WangDanqing Song . Novel berberine derivatives as adjuvants in the battle against Acinetobacter baumannii: A promising strategy for combating multi-drug resistance. Chinese Chemical Letters, 2024, 35(10): 109506-. doi: 10.1016/j.cclet.2024.109506

    16. [16]

      Zhilong XieGuohui ZhangYa MengYefei TongJian DengHonghui LiQingqing MaShisong HanWenjun Ni . A natural nano-platform: Advances in drug delivery system with recombinant high-density lipoprotein. Chinese Chemical Letters, 2024, 35(11): 109584-. doi: 10.1016/j.cclet.2024.109584

    17. [17]

      Fukui ShenYuqing ZhangGuoqing LuanKaixue ZhangZhenzhen WangYunhao LuoYuanyuan HouGang Bai . Revealing drug targets with multimodal bioorthogonal AMPD probes through visual metabolic labeling. Chinese Chemical Letters, 2024, 35(12): 109646-. doi: 10.1016/j.cclet.2024.109646

    18. [18]

      Cheng-Zhe GaoHao-Ran JiaTian-Yu WangXiao-Yu ZhuXiaofeng HanFu-Gen Wu . A dual drug-loaded tumor vasculature-targeting liposome for tumor vasculature disruption and hypoxia-enhanced chemotherapy. Chinese Chemical Letters, 2025, 36(1): 109840-. doi: 10.1016/j.cclet.2024.109840

    19. [19]

      Jiajia WangXinXin GeYajing XiangXiaoliang QiYing LiHangbin XuErya CaiChaofan ZhangYulong LanXiaojing ChenYizuo ShiZhangping LiJianliang Shen . An ionic liquid functionalized sericin hydrogel for drug-resistant bacteria-infected diabetic wound healing. Chinese Chemical Letters, 2025, 36(2): 109819-. doi: 10.1016/j.cclet.2024.109819

    20. [20]

      Chunlei DaiLiying WangXinru YouYi ZhaoZhong CaoJun Wu . Coffee-derived self-anti-inflammatory polymer as drug nanocarrier for enhanced rheumatoid arthritis treatment. Chinese Chemical Letters, 2025, 36(3): 109869-. doi: 10.1016/j.cclet.2024.109869

Metrics
  • PDF Downloads(0)
  • Abstract views(813)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return