Citation: Peng Zhou, Qian Wang, Cheng-Liang Zhang, Fu-Xin Liang, Xiao-Zhong Qu, Jiao-Li Li, Zhen-Zhong Yang. pH responsive Janus polymeric nanosheets[J]. Chinese Chemical Letters, ;2015, 26(6): 657-661. doi: 10.1016/j.cclet.2015.04.006 shu

pH responsive Janus polymeric nanosheets

  • Corresponding author: Qian Wang,  Zhen-Zhong Yang, 
  • Received Date: 12 February 2015
    Available Online: 23 March 2015

    Fund Project: the NSF of China (Nos. 51233007 and 51203169). (No. 2012CB933200)

  • pH responsive polymeric Janus nanosheets with poly(maleic acid) moiety and crosslinked PS onto the corresponding sides have been synthesized by free radical polymerization. The Janus nanosheets can serve as solid emulsifier to stabilize an oil/water emulsion, whose stability is easily triggered by changing pH across pKa of the poly(maleic acid).
  • 加载中
    1. [1]

      [1] P.G. de Gennes, Soft matter, Rev. Mod. Phys. 64 (1992) 645-648.

    2. [2]

      [2] L. Hong, A. Cacciuto, E. Luijten, S. Granick, Clusters of charged Janus spheres, Nano Lett. 6 (2006) 2510-2514.

    3. [3]

      [3] A. Perro, S. Reculusa, S. Ravaine, E. Bourgeat-Lami, E. Duguet, Design and synthesis of Janus micro- and nanoparticles, J. Mater. Chem. 15 (2005) 3745-3760.

    4. [4]

      [4] A. Walther, A.H.E. Müller, Janus particles: synthesis, self-assembly, physical properties, and applications, Rev. Chem. 113 (2013) 5194-5261.

    5. [5]

      [5] S. Jiang, S. Granick, Janus Particles Synthesis Self-Assembly and Applications, RSC, London, England, 2012.

    6. [6]

      [6] F.X. Liang, C.L. Zhang, Z.Z. Yang, Rational design and synthesis of Janus composites, Adv. Mater. 26 (2014) 6944-6949.

    7. [7]

      [7] R. Erhardt, A. Böker, H. Zettl, et al., Janus micelles, Macromolecules 34 (2001) 1069-1075.

    8. [8]

      [8] Q. Xu, X.W. Kang, R.A. Bogomolni, S.W. Chen, Controlled assembly of Janus nanoparticles, Langmuir 26 (2010) 14923-14928.

    9. [9]

      [9] M. Paulus, P. Degen, T. Brenner, et al., Sticking polydisperse hydrophobic magnetite nanoparticles to lipid membranes, Langmuir 26 (2010) 15945-15947.

    10. [10]

      [10] J.P. Ge, Y.X. Hu, T.R. Zhang, Y.D. Yin, Superparamagnetic composite colloids with anisotropic structures, J. Am. Chem. Soc. 129 (2007) 8974-8975.

    11. [11]

      [11] K.P. Yuet, D.K. Hwang, R. Haghgooie, P.S. Doyle, Multifunctional superparamagnetic Janus particles, Langmuir 26 (2010) 4281-4287.

    12. [12]

      [12] L. Baraban, D. Makarov, R. Streubel, et al., Catalytic Janus motors on microfluidic chip: deterministic motion for targeted cargo delivery, ACS Nano 6 (2012) 3383- 3389.

    13. [13]

      [13] N. Chaturvedi, Y.Y. Hong, A. Sen, D. Velegol, Magnetic enhancement of phototaxing catalytic motors, Langmuir 26 (2010) 6308-6313.

    14. [14]

      [14] L. Cheng, G.Z. Zhang, L. Zhu, D.Y. Chen, M. Jiang, Nanoscale tubular and sheetlike superstructures from hierarchical self-assembly of polymeric Janus particles, Angew. Chem. Int. Ed. 47 (2008) 10171-10174.

    15. [15]

      [15] Z.H. Nie, D. Fava, E. Kumacheva, et al., Self-assembly of metal-polymer analogues of amphiphilic triblock copolymers, Nat. Mater. 6 (2007) 609-614.

    16. [16]

      [16] B. Dong, B. Li, C.Y. Li, Janus nanoparticle dimers and chains via polymer single crystals, J. Mater. Chem. 21 (2011) 13155-13158.

    17. [17]

      [17] T.Wang, S.R. Chen, F. Jin, et al., Droplet-assisted fabrication of colloidal crystals from flower-shaped porphyrin Janus particles, Chem. Commun. 51 (2015) 1367-1370.

    18. [18]

      [18] A. Walther, K. Matussek, A.H.E. Müller, Engineering nanostructured polymer blends with controlled nanoparticle location using Janus particles, ACS Nano 2 (2008) 1167-1178.

    19. [19]

      [19] H. Xu, R. Erhardt, V. Abetz, A.H.E. Müller, W.A. Goedel, Janus micelles at the air/water interface, Langmuir 17 (2001) 6787-6793.

    20. [20]

      [20] S.H. Kim, A. Abbaspourrad, D.A. Weitz, Amphiphilic crescent-moon-shaped microparticles formed by selective adsorption of colloids, J. Am. Chem. Soc. 133 (2011) 5516-5524.

    21. [21]

      [21] A. Walther, M. Hoffmann, A.H.E. Müller, Emulsion polymerization using Janus particles as stabilizers, Angew. Chem. Int. Ed. 47 (2008) 711-714.

    22. [22]

      [22] B.P. Binks, P.D.I. Fletcher, Particles adsorbed at the oil-water interface: a theoretical comparison between spheres of uniform wettability and "Janus" particles, Langmuir 17 (2001) 4708-4710.

    23. [23]

      [23] N. Glaser, D.J. Adams, A. Böker, G. Krausch, Janus particles at liquid-liquid interfaces, Langmuir 22 (2006) 5227-5229.

    24. [24]

      [24] Y.J. Liu, F.X. Liang, Q. Wang, X.Z. Qu, Z.Z. Yang, Flexible responsive Janus nanosheets, Chem. Commun. 51 (2015) 3562-3565.

    25. [25]

      [25] T. Isojima, M. Lattuada, J.B.V. Sande, T.A. Hatton, Reversible clustering of pHand temperature-responsive Janus magnetic nanoparticles, ACS Nano 2 (2008) 1799-1806.

    26. [26]

      [26] T. Tanaka, M. Okayama, H. Minami, M. Okubo, Dual stimuli-responsive mushroom-like Janus polymer particles as particulate surfactants, Langmuir 26 (2010) 11732-11736.

    27. [27]

      [27] H.L. Yang, F.X. Liang, X. Wang, et al., Responsive Janus composite nanosheets, Macromolecules 46 (2013) 2754-2759.

    28. [28]

      [28] T. Nisisako, T. Torii, T. Takahashi, Y. Takizawa, Synthesis of monodisperse bicolored Janus particles with electrical anisotropy using a microfluidic co-flow system, Adv. Mater. 18 (2006) 1152-1156.

    29. [29]

      [29] S.H. Kim, S.J. Jeon, W.C. Jeong, H.S. Park, S.M. Yang, Optofluidic synthesis of electroresponsive photonic Janus balls with isotropic structural colors, Adv. Mater. 20 (2008) 4129-4134.

    30. [30]

      [30] X.Y. Ji, Q. Zhang, F.X. Liang, et al., Ionic liquid functionalized Janus nanosheets, Chem. Commun. 50 (2014) 5706-5709.

    31. [31]

      [31] Y. Nonomura, S. Komura, K. Tsujii, Adsorption of microstructured particles at liquid-liquid interfaces, J. Phys. Chem. B 110 (2006) 13124-13129.

    32. [32]

      [32] Y. Nonomura, S. Komura, K. Tsujii, Adsorption of disk-shaped Janus beads at liquid-liquid interfaces, Langmuir 20 (2004) 11821-11823.

    33. [33]

      [33] F.X. Liang, K. Shen, X.Z. Qu, et al., Inorganic Janus nanosheets, Angew. Chem. Int. Ed. 50 (2011) 2379-2382.

    34. [34]

      [34] J.R. Dorvee, A.M. Derfus, S.N. Bhatia, M.J. Sailor, Manipulation of liquid droplets using amphiphilic, magnetic one-dimensional photonic crystal chaperones, Nat. Mater. 3 (2004) 896-899.

    35. [35]

      [35] F.X. Liang, J.G. Liu, X.Z. Qu, et al., Janus hollow spheres by emulsion interfacial selfassembled sol-gel process, Chem. Commun. 47 (2011) 1231-1233.

    36. [36]

      [36] Y. Chen, F.X. Liang, H.L. Yang, et al., Janus nanosheets of polymer-inorganic layered composites, Macromolecules 45 (2012) 1460-1467.

    37. [37]

      [37] A. Walther, X. André, M. Drechsler, V. Abetz, A.H.E. Müller, Janus discs, J. Am. Chem. Soc. 129 (2007) 6187-6198.

    38. [38]

      [38] A. Walther, M. Drechsler, A.H.E. Müller, Structures of amphiphilic Janus discs in aqueous media, Soft Matter 5 (2009) 385-390.

    39. [39]

      [39] L. Gao, K. Zhang, Y.M. Chen, Dumpling-like nanocomplexes of foldable Janus polymer sheets and spheres, ACS Macro Lett. 1 (2012) 1143-1145.

    40. [40]

      [40] A. Wolf, A. Walther, A.H.E. Müller, Janus triad: three types of nonspherical, nanoscale Janus particles from one single triblock terpolymer, Macromolecules 44 (2011) 9221-9229.

    41. [41]

      [41] R.H. Deng, F.X. Liang, P. Zhou, et al., Janus nanodisc of diblock copolymers, Adv. Mater. 26 (2014) 4469-4472.

    42. [42]

      [42] J. He, D. Chen, X.M. Fan, et al., Reactive poly(divinyl benzene-co-maleic anhydride) nanoparticles: preparation and characterization, Chin. Chem. Lett. 24 (2013) 970-974.

    43. [43]

      [43] H. Pan, M. Qi, Z.J. Zhang, Synthesis and study of MPNS/SMA nano-composite tanning agent, Chin. Chem. Lett. 19 (2008) 435-437.

    44. [44]

      [44] T. Kitano, S. Kawaguchi, K. Ito, A. Minakata, Dissociation behavior of poly(fumaric acid) and poly(maleic acid), Macromolecules 20 (1987) 1598-1606.

  • 加载中
    1. [1]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    2. [2]

      Yaoyin LouXiaoyang Jerry HuangKuang-Min ZhaoMark J. DouthwaiteTingting FanFa LuOuardia AkdimNa TianShigang SunGraham J. Hutchings . Stable core-shell Janus BiAg bimetallic catalyst for CO2 electrolysis into formate. Chinese Chemical Letters, 2025, 36(3): 110300-. doi: 10.1016/j.cclet.2024.110300

    3. [3]

      Di ZHANGTianxiang XIEXu HEWanyu WEIQi FANJie QIAOGang JINNingbo LI . Construction and antitumor activity of pH/GSH dual-responsive magnetic nanodrug. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 786-796. doi: 10.11862/CJIC.20240329

    4. [4]

      Jianye KangXinyu YangXuhao YangJiahui SunYuhang LiuShutao WangWenlong Song . Carbon dots-enhanced pH-responsive lubricating hydrogel based on reversible dynamic covalent bondings. Chinese Chemical Letters, 2024, 35(5): 109297-. doi: 10.1016/j.cclet.2023.109297

    5. [5]

      Rui WangHe QiHaijiao ZhengQiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215

    6. [6]

      Yan LiuYang WangJiayi ZhuXuxian SuXudong LinLiang XuXiwen Xing . Employing pH-responsive RNA triplex to control CRISPR/Cas9-mediated gene manipulation in mammalian cells. Chinese Chemical Letters, 2024, 35(9): 109427-. doi: 10.1016/j.cclet.2023.109427

    7. [7]

      Jiaxu WangJinxie ZhangXiuping WangJingying WangLina ChenJiahui CaoWei CaoSiyu LiangPing LuanKe ZhengXiao-Kun OuyangLi GaoXiaowen OuFan ZhangMeitong OuLin Mei . CaCO3-coated hollow mesoporous silica nanoparticles for pH-responsive fungicides release. Chinese Chemical Letters, 2024, 35(12): 109697-. doi: 10.1016/j.cclet.2024.109697

    8. [8]

      Yunjie DangYanru FengXiao ChenChaoxing HeShujie WeiDingyang LiuJinlong QiHuaxing ZhangShaokun YangZhiyun NiuBai Xiang . Development of a multi-level pH-responsive lipid nanoplatform for efficient co-delivery of siRNA and small-molecule drugs in tumor treatment. Chinese Chemical Letters, 2024, 35(12): 109660-. doi: 10.1016/j.cclet.2024.109660

    9. [9]

      Xing Xiao Yunling Jia Wanyu Hong Yuqing He Yanjun Wang Lizhi Zhao Huiqin An Zhen Yin . Sulfur-defective ZnIn2S4 nanosheets decorated by TiO2 nanosheets with exposed {001} facets to accelerate charge transfer for efficient photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100474-100474. doi: 10.1016/j.cjsc.2024.100474

    10. [10]

      Peng JiaYunna GuoDongliang ChenXuedong ZhangJingming YaoJianguo LuLiqiang ZhangIn-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624

    11. [11]

      Yujuan Zhao Zaiwang Zhao . Monolayer mesoporous nanosheets with surface asymmetry via a dual-emulsion-directed monomicelle assembly. Chinese Journal of Structural Chemistry, 2024, 43(2): 100238-100238. doi: 10.1016/j.cjsc.2024.100238

    12. [12]

      Guo-Hong GaoRun-Ze ZhaoYa-Jun WangXiao MaYan LiJian ZhangJi-Sen Li . Core–shell heterostructure engineering of CoP nanowires coupled NiFe LDH nanosheets for highly efficient water/seawater oxidation. Chinese Chemical Letters, 2024, 35(8): 109181-. doi: 10.1016/j.cclet.2023.109181

    13. [13]

      Yuchen WangYaoyu LiuXiongfei HuangGuanjie HeKai Yan . Fe nanoclusters anchored in biomass waste-derived porous carbon nanosheets for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(8): 109301-. doi: 10.1016/j.cclet.2023.109301

    14. [14]

      Wenjing XiongYulin XuFangzhou ZhaoBaokai XiaHongqiang WangWei LiuSheng ChenYongzhi Zhang . Graphene architecture interpenetrated with mesoporous carbon nanosheets promotes fast and stable potassium storage. Chinese Chemical Letters, 2025, 36(4): 109738-. doi: 10.1016/j.cclet.2024.109738

    15. [15]

      Ke Wang Jia Wu Shuyi Zheng Shibin Yin . NiCo Alloy Nanoparticles Anchored on Mesoporous Mo2N Nanosheets as Efficient Catalysts for 5-Hydroxymethylfurfural Electrooxidation and Hydrogen Generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100104-100104. doi: 10.1016/j.cjsc.2023.100104

    16. [16]

      Binyang QinMengqi WangShimei WuYining LiChilin LiuYufei ZhangHaosen Fan . Carbon dots confined nanosheets assembled NiCo2S4@CDs cross-stacked architecture for enhanced sodium ion storage. Chinese Chemical Letters, 2024, 35(7): 108921-. doi: 10.1016/j.cclet.2023.108921

    17. [17]

      Yan FanJiao TanCuijuan ZouXuliang HuXing FengXin-Long Ni . Unprecedented stepwise electron transfer and photocatalysis in supramolecular assembly derived hybrid single-layer two-dimensional nanosheets in water. Chinese Chemical Letters, 2025, 36(4): 110101-. doi: 10.1016/j.cclet.2024.110101

    18. [18]

      Yueying WangJianming XiongLinwei XinYuanyuan LiHe HuangWenjun Miao . Photosensitizer-synergized g-carbon nitride nanosheets with enhanced photocatalytic activity for eradicating drug-resistant bacteria and promoting wound healing. Chinese Chemical Letters, 2025, 36(4): 110003-. doi: 10.1016/j.cclet.2024.110003

    19. [19]

      Xiaodan WangYingnan LiuZhibin LiuZhongjian LiTao ZhangYi ChengLecheng LeiBin YangYang Hou . Highly efficient electrosynthesis of H2O2 in acidic electrolyte on metal-free heteroatoms co-doped carbon nanosheets and simultaneously promoting Fenton process. Chinese Chemical Letters, 2024, 35(7): 108926-. doi: 10.1016/j.cclet.2023.108926

    20. [20]

      Lu DaiYuxin RenShuang LiMeidi WangChentao HuYa-Pan WuGuangtong HaiDong-Sheng Li . Room-temperature synthesis of Co(OH)2/Mo2TiC2Tx hetero-nanosheets with interfacial coupling for enhanced oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(4): 109774-. doi: 10.1016/j.cclet.2024.109774

Metrics
  • PDF Downloads(0)
  • Abstract views(810)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return