Citation:
Min Sha, Ping Xing, Biao Jiang. Strategies for synthesizing non-bioaccumulable alternatives to PFOA and PFOS[J]. Chinese Chemical Letters,
;2015, 26(5): 491-498.
doi:
10.1016/j.cclet.2015.03.038
-
This minireview describes the strategies for synthesis of fluorinated surfactants potentially nonbioaccumulable. Various strategies have been focused on (I) reducing the length of the perfluorocarbon chain, (II) introducing hetero atoms into the fluorocarbon chain, (III) introducing branch (herein and after branch means the fluoro-carbon chain section is not straight). In most cases, the surface tensions versus the surfactant concentrations have been assessed. These above strategies led to various highly fluorinated (perfluorinated or not perfluorinated) surfactants whose chemical changes enabled to obtain novel alternatives to perfluorooctanoic acid (PFOA) and perfluorooctane sulphonate (PFOS).
-
Keywords:
- Fluorinated surfactant,
- PFOA,
- PFOS,
- Alternative,
- Surface tension
-
-
-
[1]
[1] A.X. Song, S.L. Dong, J.C. Hao, et al., Functions of fluorosurfactants 1: surface activities-improved and vesicle formation of the short-tailed chain sulfonate salt mixed with a fluorosurfactant, J. Fluor. Chem. 126 (2005) 1266-1273.
-
[2]
[2] C.Q. Lu, J.H. Kim, D.D. DesMarteau, Synthesis of perfluoro-t-butyl trifluorovinyl ether and its copolymerization with TFE, J. Fluor. Chem. 131 (2010) 17-20.
-
[3]
[3] T. Gramstad, R.N. Haszeldine, Perfluoroalkyl derivatives of sulphur. Part VII. Alkyl trifluoromethanesulphonates as alkylating agents, trifluoromethanesulphonic anhydride as a promoter for esterification, and some reactions of trifluoromethanesulphonic acid, J. Chem. Soc. (1957) 4069-4079.
-
[4]
[4] M.P. Krafft, J.G. Riess, Perfluorocarbons: life sciences and biomedical uses dedicated to the memory of Professor Guy Ourisson, a true RENAISSANCE man, J. Polym. Sci. A: Polym. Chem. 45 (2007) 1185-1198.
-
[5]
[5] R. Kaplánek, O. Paleta, I. Ferjentsiková, M. Kodíček, Novel perfluoroalkylated oligo(oxyethylene) methyl ethers with high hemocompatibility and excellent co-emulsifying properties for potential biomedical uses, J. Fluor. Chem. 130 (2009) 308-316.
-
[6]
[6] L. Caillier, E.T. de Givenchy, R. Levy, et al., Polymerizable semi-fluorinated gemini surfactants designed for antimicrobial materials, J. Colloid Interface Sci. 332 (2009) 201-207.
-
[7]
[7] J. Kovarova, Z. Svobodova, Perfluorinated compounds: occurrence and risk profile, Neuro Endocrinol. Lett. 29 (2008) 599-608.
-
[8]
[8] D. Prescher, U. Gross, J. Wotzka, M. Tscheu-Schlü ter, W. Stark, Environmental behavior of fluoro surfactants. Part 2. Study on biochemical degradability, Acta Hydrochim. Hydrobiol. 13 (1985) 17-24.
-
[9]
[9] B.D. Key, R.D. Howell, C.S. Criddle, Fluorinated organics in the biosphere, Environ. Sci. Technol. 31 (1997) 2445-2454.
-
[10]
[10] B.D. Key, R.D. Howell, C.S. Criddle, Defluorination of organofluorine sulfur compounds by Pseudomonas Sp. Strain D2, Environ. Sci. Technol. 32 (1998) 2283-2287.
-
[11]
[11] M. Houde, J.W. Martin, R.J. Letcher, K.R. Solomon, D.C.G. Muir, Biological monitoring of polyfluoroalkyl substances: a review, Environ. Sci. Technol. 40 (2006) 3463-3473.
-
[12]
[12] C. Lu, Y.L. Shi, Z. Zhou, et al., Perfluorinated compounds in blood of textile workers and barbers, Chin. Chem. Lett. 25 (2014) 1145-1148.
-
[13]
[13] K. Kannan, S. Corsolini, J. Falandysz, et al., Perfluorooctanesulfonate and related fluorochemicals in human blood from several countries, Environ. Sci. Technol. 38 (2004) 4489-4495.
-
[14]
[14] U.S. Environmental Protection Agency, http://www.epa.gov/oppt/pfoa/pubs/stewardship/index.html.
-
[15]
[15] J.R. Parsons, M. Sáez, J. Dolfing, P. de Voogt, Biodegradation of Perfluorinated Compounds, Reviews of Environmental Contamination and Toxicology, vol. 196, Springer, New York, 2008, pp. 53-71.
-
[16]
[16] K.A. Kennedy, G.W. Roberts, J.M. Desimone, Heterogeneous Polymerization of Fluoroolefins in Supercritical Carbon Dioxide, Polymer Particles, Advances in Polymer Science, vol. 175, Springer-Verlag, Berlin, 2005, pp. 329-346.
-
[17]
[17] W.Y. Gu, D.D. Feng, X.L. Su, Progress of alternatives for PFOA, Organo-Fluor. Ind. 3 (2009) 28-30.
-
[18]
[18] M.G. Wang, M.Y. Wang, Y.B. Tan, et al., Short fluorocarbon chain-based environment- friendly cationic fluorosurfactant and its preparation method, CN 102,814,144 A, 2012.
-
[19]
[19] L. Wang, Synthesis and Properties of Perfluorobutylamide Fluorinated Surfactants, M.S. thesis, Shanxi University of Science and Technology, 2014.
-
[20]
[20] G.D. Long, S. Xiao, D.M. Fu, J. Gulmira, X.S. Li, Synthesis and surface properties of perfluorobutyl cationic surfactant, Organo-Fluor. Ind. 3 (2012) 1-4.
-
[21]
[21] G.D. Long, S. Xiao, J. Gulmira, et al., Synthesis and surface properties of N'- 3(dimethyl)-propyl-(N-perfluorobutyl sulfonyl-N-alkylsulfonyl)-amine oxide, Organo-Fluor. Ind. 4 (2012) 1-4.
-
[22]
[22] B.Q. Yang, K. Chen, H. Xing, J.X. Xiao, Perfluorobutyl-based fluorinated surfactant with high surface activity, Acta Phys. Chim. Sin. 25 (2009) 2409-2412.
-
[23]
[23] S. Xiao, Synthesis and Application on Substituting Fluorine Containing Surfactant for PFOS, M.S. thesis, Central China Normal University, 2013.
-
[24]
[24] J. Gulimire, Synthesis and Application of Fluorinated Surfactants, M.S. thesis, Central China Normal University, 2014.
-
[25]
[25] L. Peng, G.D. Long, S.L. Wang, et al., Synthesis and surface properties of N-3- (dimethylamino)-propyl perfluorohexylsulfonyl compounds, Fire Sci. Technol. 30 (2011) 937-939.
-
[26]
[26] H.X. Shi, X.L. Qiu, H.K. Wu, L.J. Chen, J.P. Xiang, Synthesis and properties of ammonium salts of perfluorohexylsulfonamides, Fine Chem. 29 (2012) 438-442.
-
[27]
[27] M.M. Yao, Y. Yang, M.Y. Xue, M. Lin, Synthesis and properties of novel fluorinated surfactant, N. Chem. Mater. 41 (2013) 73-75.
-
[28]
[28] C. Zhang, Study on Synthesis and Properties of Fluorocarbon, M.S. thesis, Hubei University, 2013.
-
[29]
[29] F.G. Drakesmith, D.A. Hughes, The electrochemical fluorination of octanoyl chloride, J. Appl. Electrochem. 9 (1979) 685-697.
-
[30]
[30] R.N. Haszeldine, Synthesis of fluorocarbons, perfluoroalkyl iodides, bromides, and chlorides, and perfluoroalkyl Grignard reagents, Nature 167 (1951) 139-140.
-
[31]
[31] H.J. Emeléus, R.N. Haszeldine, The reactions of fluorocarbon radicals. I. The reaction of iodotrifluoromethane with ethylene and tetrafluoroethylene, J. Chem. Soc. (1949) 2856-2861.
-
[32]
[32] P.M. Murphy, C.S. Baldwin, R.C. Buck, Synthesis utilizing n-perfluoroalkyl iodides[RFI, CnF2n+1-I] 2000-2010, J. Fluor. Chem. 138 (2012) 3-23.
-
[33]
[33] M.A. Guerra, K. Hintzer, M. Jurgens, et al., Fluorinated surfactants with low toxicity and/or little bioaccumulation, their manufacture and use, US 20,070,276,103 A1, 2007.
-
[34]
[34] D.S. Slinn, S.W. Green, Fluorocarbon fluids for the use in the electronic industry, in: R.E. Banks (Ed.), Preparation, Properties and Industrial Applications of Organofluoride Compounds, vol. 2, Ellis Horwood, Chichester, 1982, pp. 45-82.
-
[35]
[35] D. Sianesi, G. Marchionni, R.J. De Pasquale, Perfluoropolyethers from perfluoroolefin photooxidation, in: R.E. Banks, B.E. Smart, J.C. Tatlow (Eds.), Organofluorine Chemistry: Principles and Commercial Applications, Plenum Press, New York, 1994, pp. 431-460.
-
[36]
[36] J. Scheirs, Perfluoropolyethers: synthesis, characterization and application, in: J. Scheirs (Ed.), Modern Fluoropolymers, Wiley, New York, 1997, pp. 435-486.
-
[37]
[37] S.V. Kostjuk, E. Ortega, F. Ganachaud, B. Améduri, B. Boutevin, Anionic ringopening polymerization of hexafluoropropylene oxide using alkali metal fluorides as catalysts: a mechanistic study, Macromolecules 42 (2009) 612-619.
-
[38]
[38] J.L. Howell, E.W. Perez, Perfluoropolyoxyalkylenes and perfluoropolyethers as lubricating oils and greases for magnetic recording devices, US 20,030,073,588 A1, 2003.
-
[39]
[39] P. Kappler, M.J. Lina, Process for manufacture of fluoropolymers and surfactant for use in the process, FR 2,871,460 A1, 2005.
-
[40]
[40] G. Boutevin, D. Tiffes, C. Loubat, B. Boutevin, B.Ameduri,Newfluorinated surfactants based on vinylidene fluoride telomers, J. Fluor. Chem. 134 (2012) 7-84.
-
[41]
[41] T.T. Vasil’eva, V.A. Kochetkova, B.V. Nelyubin, et al., Radical telomerization of 3,3,3-trifluoro-1-propene with tetbromomethane. Individual chain transfer constants, Izv. Akad. Nauk SSSR, Ser. Khim. (1987) 808-811.
-
[42]
[42] T.T. Vasil’eva, V.A. Kochetkova, V.I. Dostovalova, et al., Reaction of 3,3,3-trifluoro- 1-propene with bromoform and methylene bromide, Izv. Akad. Nauk SSSR, Ser. Khim. (1989) 2558-2562.
-
[43]
[43] T.T. Vasil’eva, I.A. Fokina, S.V. Vitt, et al., Radical telomerization of 3,3,3-trifluoropropene- 1 with CCl4, Izv. Akad. Nauk SSSR, Ser. Khim. (1990) 1807-1811.
-
[44]
[44] T.T. Vasil’eva, I.A. Fokina, S.V. Vitt, Reaction of benzyl chloride with propylene and trifluoropropene under metal complex initiation conditions, Izv. Akad. Nauk SSSR, Ser. Khim. (1991) 1384-1388.
-
[45]
[45] R.A. Zamyslov, A.G. Shostenko, I.V. Dobrov, V.E. Myshkin, Radical telomerization of 3,3,3-trifluoro-1-propene with 2-propanol, Zh. Org. Khim. 16 (1980) 897-901.
-
[46]
[46] R.A. Zamyslov, Reactivity of C1-C4 aliphatic alcohols in radical telomerization with 3,3,3-trifluoropropylene, Zh. Vses. Khim. Obsh. 31 (1986) 589-591.
-
[47]
[47] R.N. Haszeldine, Reactions of fluorocarbon radicals. V. Alternative synthesis for (trifluoromethyl)acetylene (3,3,3-trifluoropropyne) and the influence of polyfluoro groups on adjacent hydrogen and halogen atoms, J. Chem. Soc. (1951) 2495-2504.
-
[48]
[48] R.N. Haszeldine, The addition of free radicals to unsaturated systems. I. The direction of radical addition to 3,3,3-trifluoropropene, J. Chem. Soc. (1952) 2504-2513.
-
[49]
[49] G.K. Kostov, B. Ameduri, S.M. Brandstadter, Telomerization of 3,3,3-trifluoroprop- 1-ene and functionalization of its telomers, Collect. Czechoslov. Chem. Commun. 73 (2008) 1747-1763.
-
[50]
[50] G. Kostov, B. Améduri, S.M. Brandstadter, Radical telomerization of 3,3,3-trifluoropropene with diethyl hydrogen phosphonate: characterization of the first telomeric adducts and assessment of the transfer constants, J. Fluor. Chem. 128 (2007) 910-918.
-
[51]
[51] W. Dmowski, H. Plenkiewicz, K. Piasecka-Maciejewska, Synthetic utility of 3- (perfluoro-1,1-dimethylbutyl)-1-propene. Part III. Synthesis and properties of (perfluoro-1,1-dimethylbutyl) acetic and propionic acids and their salts, J. Fluor. Chem. 48 (1990) 77-84.
-
[52]
[52] G. Kostov, F. Boschet, B. Ameduri, Original fluorinated surfactants potentially nonbioaccumulable, J. Fluor. Chem. 130 (2009) 1192-1199.
-
[53]
[53] Z.M. Liu, C.M. Tan, J.F. Wu, et al., Synthesis of fluoro-tertiary and quaternary ammonium cationic surfactants, Dyest. Color. 43 (2006) 31-33.
-
[54]
[54] Q.S. Zhang, Z.Y. Luo, D.P. Curran, Separation of "light fluorous" reagents and catalysts by fluorous solid-phase extraction: synthesis and study of a family of triarylphosphines bearing linear and branched fluorous tags, J. Org. Chem. 65 (2000) 8866-8873.
-
[55]
[55] S.Q. Mao, M.F. Tang, C. Gu, Synthesis, surface activities and oil collecting performance of different ionic fluorinated surfactants derived from hexafluoropropylene trimer, Organo-Fluor. Ind. 1 (1996) 1-5.
-
[56]
[56] I. Ikeda, M. Tsuji, M. Okahara, Fluoro surfactants, tenside, surfactants, Detergents 24 (1987) 272-274.
-
[57]
[57] H. Tomota, N. Nakayama, Preparation of fluorine-containing aromatic carboxylic acids as intermediates for surfactants and polymers, JP 03,093,744 A, 1991.
-
[58]
[58] Z.M. Liu, J.F. Wu, L.M. Tan, et al., Synthesis and properties of cationic surfactant from hexafluoropropene dimer, Fine Chem. 22 (2005) 53-55.
-
[59]
[59] B.Q. Yang, L. Wang, J. Yang, J. Liu, Synthesis and properties of fluorinated surfactants based on hexafuoropropene dimmer, Chem. Res. Appl. 25 (2013) 1523-1527.
-
[60]
[60] T.C. Zheng, Y.J. Zhao, Z.G. Lei, Q. Zhou, S.H. Wang, Research progress on performance and synthesis of surfactants based on hexafluoroprpene oligomers, Chem. Prod. Technol. 19 (2012) 6-11.
-
[61]
[61] H. Qi, W.G. Xu, W.J. Zhao, et al., Hexafluoropropylene dimer and its applications, Organo-Fluor. Ind. 4 (2012) 18-22.
-
[62]
[62] J.H. Xu, Z.J. Chen, W.B. Zhang, Hexafluoropropylene dimers and derivatives thereof, Organo-Fluor. Ind. 3 (2007) 29-32.
-
[63]
[63] M. Sha, R.M. Pan, L.W. Zhan, P. Xing, B. Jiang, Synthesis and surface activity study of a novel branched fluorinated anion surfactant with CF3CF2CF2C(CF3)2 group, Chin. J. Chem. 32 (2014) 995-998.
-
[64]
[64] M. Sha, R.M. Pan, P. Xing, B. Jiang, Synthesis and surface activity study of branched fluorinated cationic (FCS), gemini (FGS) and amphoteric (FAS) surfactants with CF3CF2CF2C(CF3)2 group, J. Fluor. Chem. 169 (2015) 61-65.
-
[1]
-
-
-
[1]
Yukai Tong , Zhijun Wu , Bo Zhou , Min Hu , Anpei Ye . Surface tension of single suspended aerosol microdroplets. Chinese Chemical Letters, 2024, 35(4): 109062-. doi: 10.1016/j.cclet.2023.109062
-
[2]
Yongmin Zhang , Shuang Guo , Mingyue Zhu , Menghui Liu , Sinong Li . Design and Improvement of Physicochemical Experiments Based on Problem-Oriented Learning: a Case Study of Liquid Surface Tension Measurement. University Chemistry, 2024, 39(2): 21-27. doi: 10.3866/PKU.DXHX202307026
-
[3]
Yutong Dong , Huiling Xu , Yucheng Zhao , Zexin Zhang , Ying Wang . The Hidden World of Surface Tension and Droplets. University Chemistry, 2024, 39(6): 357-365. doi: 10.3866/PKU.DXHX202312022
-
[4]
Ruilin Han , Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023
-
[5]
Meng Lin , Heng Zhang , Shiling Yuan . Exploring a Combined Theory-Practice-Simulation Teaching Model in Physical Chemistry: A Case Study of Surface Tension. University Chemistry, 2025, 40(4): 189-194. doi: 10.12461/PKU.DXHX202407053
-
[6]
Yingying Yan , Wanhe Jia , Rui Cai , Chun Liu . An AIPE-active fluorinated cationic Pt(Ⅱ) complex for efficient detection of picric acid in aqueous media. Chinese Chemical Letters, 2024, 35(5): 108819-. doi: 10.1016/j.cclet.2023.108819
-
[7]
Dong-Sheng Deng , Su-Qin Tang , Yong-Tu Yuan , Ding-Xiong Xie , Zhi-Yuan Zhu , Yue-Mei Huang , Yun-Lin Liu . C-F insertion reaction sheds new light on the construction of fluorinated compounds. Chinese Chemical Letters, 2024, 35(8): 109417-. doi: 10.1016/j.cclet.2023.109417
-
[8]
Jiayu Xu , Meng Li , Baoxia Dong , Ligang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798
-
[9]
Qiuyun Li , Yannan Zhu , Yining Wang , Gang Qi , Wen-Juan Hao , Kelu Yan , Bo Jiang . Catalytic CH activation-initiated transdiannulation: An oxygen transfer route to ring-fluorinated tricyclic γ-lactones. Chinese Chemical Letters, 2024, 35(9): 109494-. doi: 10.1016/j.cclet.2024.109494
-
[10]
Lan Yang , Yu Li , Mou Jiang , Rui Zhou , Hengjiang Cong , Minghui Yang , Lei Zhang , Shenhui Li , Yunhuang Yang , Maili Liu , Xin Zhou , Zhong-Xing Jiang , Shizhen Chen . Fluorinated [2]rotaxanes as sensitive 19F MRI agents: Threading for higher sensitivity. Chinese Chemical Letters, 2024, 35(10): 109512-. doi: 10.1016/j.cclet.2024.109512
-
[11]
Jianwen Zhao , Shuai Wang , Shanshan Zhao , Liwei Chen , Fangang Meng , Xuelin Tian . A non-fluorinated liquid-like membrane with excellent anti-scaling performance for membrane distillation. Chinese Chemical Letters, 2025, 36(1): 109883-. doi: 10.1016/j.cclet.2024.109883
-
[12]
Zhen-Zhen Dong , Jin-Hao Zhang , Lin Zhu , Xiao-Zhong Fan , Zhen-Guo Liu , Yi-Bo Yan , Long Kong . Attenuating reductive decomposition of fluorinated electrolytes for high-voltage lithium metal batteries. Chinese Chemical Letters, 2025, 36(4): 109773-. doi: 10.1016/j.cclet.2024.109773
-
[13]
Zhiwei Zhong , Yanbin Huang , Wantai Yang . A simple photochemical method for surface fluorination using perfluoroketones. Chinese Chemical Letters, 2024, 35(5): 109339-. doi: 10.1016/j.cclet.2023.109339
-
[14]
Yu He , Hao Jiang , Shaoxuan Yuan , Jiayi Lu , Qiang Sun . On-surface photo-induced dechlorination. Chinese Chemical Letters, 2024, 35(9): 109807-. doi: 10.1016/j.cclet.2024.109807
-
[15]
Xin Li , Zhen Xu , Donglei Bu , Jinming Cai , Huamei Chen , Qi Chen , Ting Chen , Fang Cheng , Lifeng Chi , Wenjie Dong , Zhenchao Dong , Shixuan Du , Qitang Fan , Xing Fan , Qiang Fu , Song Gao , Jing Guo , Weijun Guo , Yang He , Shimin Hou , Ying Jiang , Huihui Kong , Baojun Li , Dengyuan Li , Jie Li , Qing Li , Ruoning Li , Shuying Li , Yuxuan Lin , Mengxi Liu , Peinian Liu , Yanyan Liu , Jingtao Lü , Chuanxu Ma , Haoyang Pan , JinLiang Pan , Minghu Pan , Xiaohui Qiu , Ziyong Shen , Shijing Tan , Bing Wang , Dong Wang , Li Wang , Lili Wang , Tao Wang , Xiang Wang , Xingyue Wang , Xueyan Wang , Yansong Wang , Yu Wang , Kai Wu , Wei Xu , Na Xue , Linghao Yan , Fan Yang , Zhiyong Yang , Chi Zhang , Xue Zhang , Yang Zhang , Yao Zhang , Xiong Zhou , Junfa Zhu , Yajie Zhang , Feixue Gao , Yongfeng Wang . Recent progress on surface chemistry Ⅰ: Assembly and reaction. Chinese Chemical Letters, 2024, 35(12): 110055-. doi: 10.1016/j.cclet.2024.110055
-
[16]
Xin Li , Zhen Xu , Donglei Bu , Jinming Cai , Huamei Chen , Qi Chen , Ting Chen , Fang Cheng , Lifeng Chi , Wenjie Dong , Zhenchao Dong , Shixuan Du , Qitang Fan , Xing Fan , Qiang Fu , Song Gao , Jing Guo , Weijun Guo , Yang He , Shimin Hou , Ying Jiang , Huihui Kong , Baojun Li , Dengyuan Li , Jie Li , Qing Li , Ruoning Li , Shuying Li , Yuxuan Lin , Mengxi Liu , Peinian Liu , Yanyan Liu , Jingtao Lü , Chuanxu Ma , Haoyang Pan , JinLiang Pan , Minghu Pan , Xiaohui Qiu , Ziyong Shen , Qiang Sun , Shijing Tan , Bing Wang , Dong Wang , Li Wang , Lili Wang , Tao Wang , Xiang Wang , Xingyue Wang , Xueyan Wang , Yansong Wang , Yu Wang , Kai Wu , Wei Xu , Na Xue , Linghao Yan , Fan Yang , Zhiyong Yang , Chi Zhang , Xue Zhang , Yang Zhang , Yao Zhang , Xiong Zhou , Junfa Zhu , Yajie Zhang , Feixue Gao , Li Wang . Recent progress on surface chemistry Ⅱ: Property and characterization. Chinese Chemical Letters, 2025, 36(1): 110100-. doi: 10.1016/j.cclet.2024.110100
-
[17]
Xianxu Chu , Lu Wang , Junru Li , Hui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105
-
[18]
Ce Liang , Qiuhui Sun , Adel Al-Salihy , Mengxin Chen , Ping Xu . Recent advances in crystal phase induced surface-enhanced Raman scattering. Chinese Chemical Letters, 2024, 35(9): 109306-. doi: 10.1016/j.cclet.2023.109306
-
[19]
Wenhao Chen , Jian Du , Hanbin Zhang , Hancheng Wang , Kaicheng Xu , Zhujun Gao , Jiaming Tong , Jin Wang , Junjun Xue , Ting Zhi , Longlu Wang . Surface treatment of GaN nanowires for enhanced photoelectrochemical water-splitting. Chinese Chemical Letters, 2024, 35(9): 109168-. doi: 10.1016/j.cclet.2023.109168
-
[20]
Guoliang Liu , Zhiqiang Liu , Anmin Zheng . Modulation of zeolite surface realizes dynamic copper species redispersion. Chinese Journal of Structural Chemistry, 2024, 43(6): 100308-100308. doi: 10.1016/j.cjsc.2024.100308
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(666)
- HTML views(10)