Citation: Xiao-Zhen Cui, Zhi-Guo Zhou, Yan Yang, Jie Wei, Jun Wang, Ming-Wei Wang, Hong Yang, Ying-Jian Zhang, Shi-Ping Yang. PEGylated WS2 nanosheets for X-ray computed tomography imaging and photothermal therapy[J]. Chinese Chemical Letters, ;2015, 26(6): 749-754. doi: 10.1016/j.cclet.2015.03.034 shu

PEGylated WS2 nanosheets for X-ray computed tomography imaging and photothermal therapy

  • Corresponding author: Zhi-Guo Zhou,  Ming-Wei Wang, 
  • Received Date: 31 December 2014
    Available Online: 28 February 2015

    Fund Project: Shanghai Pujiang Program (No. 13PJ1406600) (No. IRT1269)

  • WS2 nanosheets were prepared by the solvent-thermal method in the presence of n-butyl lithium, then the exfoliation under the condition of ultrasound. The formed WS2 nanosheets were conjugated with thiol-modified polyethylene glycol (PEG-SH) to improve the biocompatibility. The nanosheets (WS2-PEG) were able to inhibit the growth of a model HeLa cancer cell line in vitro due to the high photothermal conversion efficiency of 35% irradiated by an 808 nm laser (1 W/cm2). As a proof of concept, WS2-PEG nanosheets with the better X-ray attenuation property than the clinical computed tomography (CT) contrast agent (Iohexol) could be performed for CT imaging of the lymph vessel.
  • 加载中
    1. [1]

      [1] A.H. Castro Neto, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81 (2009) 109-162.

    2. [2]

      [2] X. Huang, X. Qi, F. Boey, et al., Graphene-based composites, Chem. Soc. Rev. 41 (2012) 666-686.

    3. [3]

      [3] Y. Liu, X. Dong, P. Chen, Biological and chemical sensors based on graphene materials, Chem. Soc. Rev. 41 (2012) 2283-2307.

    4. [4]

      [4] K.S. Novoselov, D. Jiang, F. Schedin, et al., Two-dimensional atomic crystals, Proc. Natl. Acad. Sci. U. S. A. 102 (2005) 10451-10453.

    5. [5]

      [5] B. Chamlagain, Q. Li, N.J. Ghimire, et al., Mobility improvement and temperature dependence in MoSe2 field-effect transistors on parylene-C substrate, ACS Nano 8 (2014) 5079-5088.

    6. [6]

      [6] H.S. Matte, A. Gomathi, A.K. Manna, et al., MoS2 and WS2 analogues of graphene, Angew. Chem. Int. Ed. 49 (2010) 4059-4062.

    7. [7]

      [7] H.-J. Chuang, X. Tan, N.J. Ghimire, et al., High mobility WSe2 p-and n-type fieldeffect transistors contacted by highly doped graphene for low-resistance contacts, Nano Lett. 14 (2014) 3594-3601.

    8. [8]

      [8] M. Chhowalla, H.S. Shin, G. Eda, et al., The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets, Nat. Chem. 5 (2013) 263-275.

    9. [9]

      [9] J. Chen, S.-L. Li, Q. Xu, et al., Synthesis of open-ended MoS2 nanotubes and the application as the catalyst of methanation, Chem. Commun. (2002) 1722-1723.

    10. [10]

      [10] M. Viršek, A. Jesih, I. Milošević, et al., Raman scattering of the MoS2 and WS2 single nanotubes, Surf. Sci. 601 (2007) 2868-2872.

    11. [11]

      [11] X. Zong, H. Yan, G. Wu, et al., Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation, J. Am. Chem. Soc. 130 (2008) 7176-7177.

    12. [12]

      [12] N. Harada, S. Sato, N. Yokoyama, Computational study on electrical properties of transition metal dichalcogenide field-effect transistors with strained channel, J. Appl. Phys. 115 (2014) 034505.

    13. [13]

      [13] RadisavljevicB, RadenovicA, BrivioJ, et al., Single-layer MoS2 transistors, Nat. Nanotechnol. 6 (2011) 147-150.

    14. [14]

      [14] Q.H. Wang, K. Kalantar-Zadeh, A. Kis, et al., Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol. 7 (2012) 699-712.

    15. [15]

      [15] X. Liu, G. Zhang, Q.-X. Pei, et al., Phonon thermal conductivity of monolayer MoS2 sheet and nanoribbons, Appl. Phys. Lett. 103 (2013) 133113.

    16. [16]

      [16] N. Perea-López, A.L. Elías, A. Berkdemir, et al., Photosensor device based on few-layered WS2Films, Adv. Funct. Mater. 23 (2013) 5511-5517.

    17. [17]

      [17] G. von Maltzahn, J.H. Park, A. Agrawal, et al., Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas, Cancer Res. 69 (2009) 3892-3900.

    18. [18]

      [18] J. Shao, R.J. Griffin, E.I. Galanzha, et al., Photothermal nanodrugs: potential of TNF-gold nanospheres for cancer theranostics, Sci. Rep. 3 (2013) 1293.

    19. [19]

      [19] S.R. Asemi, A. Farajpour, M. Borghei, et al., Thermal effects on the stability of circular graphene sheets via nonlocal continuum mechanics, Lat. Am. J. Solids Struct. 11 (2014) 704-724.

    20. [20]

      [20] M.B.A. Kunze, D.W. Wright, N.D. Werbeck, et al., Loop interactions and dynamics tune the enzymatic activity of the human histone deacetylase 8, J. Am. Chem. Soc. 135 (2013) 17862-17868.

    21. [21]

      [21] K. Yang, S. Zhang, G. Zhang, et al., Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy, Nano Lett. 10 (2010) 3318-3323.

    22. [22]

      [22] Q. Tian, M. Tang, Y. Sun, et al., Hydrophilic flower-like CuS superstructures as an efficient 980 nm laser-driven photothermal agent for ablation of cancer cells, Adv. Mater. 23 (2011) 3542-3547.

    23. [23]

      [23] Z. Chen, Q. Wang, H. Wang, et al., Ultrathin PEGylated W18O49 nanowires as a new 980 nm-laser-driven photothermal agent for efficient ablation of cancer cells in vivo, Adv. Mater. 25 (2013) 2095-2100.

    24. [24]

      [24] K. Yang, H. Xu, L. Cheng, et al., In vitro and in vivo near-infrared photothermal therapy of cancer using polypyrrole organic nanoparticles, Adv. Mater. 24 (2012) 5586-5592.

    25. [25]

      [25] Z. Zhou, B. Kong, C. Yu, et al., Tungsten oxide nanorods: an efficient nanoplatform for tumor CT imaging and photothermal therapy, Sci. Rep. 4 (2014) 3653.

    26. [26]

      [26] Z. Zhou, Y. Sun, J. Shen, et al., Iron/iron oxide core/shell nanoparticles for magnetic targeting MRI and near-infrared photothermal therapy, Biomaterials 35 (2014) 7470-7478.

    27. [27]

      [27] J. Li, F. Jiang, B. Yang, et al., Topological insulator bismuth selenide as a theranostic platform for simultaneous cancer imaging and therapy, Sci. Rep. 3 (2013) 1998.

    28. [28]

      [28] Y. Wang, K.C.L. Black, H. Luehmann, et al., Comparison study of gold nanohexapods, nanorods, and nanocages for photothermal cancer treatment, ACS Nano 7 (2013) 2068-2077.

    29. [29]

      [29] D. Kim, Y.Y. Jeong, S. Jon, A drug-loaded aptamer-gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer, ACS Nano 4 (2010) 3689-3696.

    30. [30]

      [30] S.-W. Chou, Y.-H. Shau, P.-C. Wu, et al., In vitro and in vivo studies of FePt nanoparticles for dual modal CT/MRI molecular imaging, J. Am. Chem. Soc. 132 (2010) 13270-13278.

    31. [31]

      [31] O. Rabin, J. Manuel Perez, J. Grimm, et al., An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles, Nat. Mater. 5 (2006) 118-122.

    32. [32]

      [32] Q. Xiao, W. Bu, Q. Ren, et al., Radiopaque fluorescence-transparent TaOx decorated upconversion nanophosphors for in vivo CT/MR/UCL trimodal imaging, Biomaterials 33 (2012) 7530-7539.

    33. [33]

      [33] Y. Liu, K. Ai, J. Liu, et al., A high-performance ytterbium-based nanoparticulate contrast agent for in vivo X-ray computed tomography imaging, Angew. Chem. Int. Ed. 51 (2012) 1437-1442.

    34. [34]

      [34] Q. Tian, J. Hu, Y. Zhu, et al., Sub-10 nm Fe3O4@Cu(2-x)S core-shell nanoparticles for dual-modal imaging and photothermal therapy, J. Am. Chem. Soc. 135 (2013) 8571-8577.

    35. [35]

      [35] S.S. Chou, B. Kaehr, J. Kim, et al., Chemically exfoliated MoS2 as near-infrared photothermal agents, Angew. Chem. Int. Ed. 52 (2013) 4160-4164.

    36. [36]

      [36] J.A. Faucheaux, A.L.D. Stanton, P.K. Jain, Plasmon resonances of semiconductor nanocrystals: physical principles and new opportunities, J. Phys. Chem. Lett. 5 (2014) 976-985.

  • 加载中
    1. [1]

      Yu QinMingyang HuangChenlu HuangHannah L. PerryLinhua ZhangDunwan Zhu . O2-generating multifunctional polymeric micelles for highly efficient and selective photodynamic-photothermal therapy in melanoma. Chinese Chemical Letters, 2024, 35(7): 109171-. doi: 10.1016/j.cclet.2023.109171

    2. [2]

      Leichen WangAnqing MeiNa LiXiaohong RuanXu SunYu CaiJinjun ShaoXiaochen Dong . Aza-BODIPY dye with unexpected bromination and high singlet oxygen quantum yield for photoacoustic imaging-guided synergetic photodynamic/photothermal therapy. Chinese Chemical Letters, 2024, 35(6): 108974-. doi: 10.1016/j.cclet.2023.108974

    3. [3]

      Xuejian XingPan ZhuE PangShaojing ZhaoYu TangZheyu HuQuchang OuyangMinhuan Lan . D-A-D-structured boron-dipyrromethene with aggregation-induced enhanced phototherapeutic efficiency for near-infrared fluorescent and photoacoustic imaging-guided synergistic photodynamic and photothermal cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109452-. doi: 10.1016/j.cclet.2023.109452

    4. [4]

      Xiao-Fang LvXiao-Yun RanYu ZhaoRui-Rui ZhangLi-Na ZhangJing ShiJi-Xuan XuQing-Quan KongXiao-Qi YuKun Li . Combing NIR-Ⅱ molecular dye with magnetic nanoparticles for enhanced photothermal theranostics with a 95.6% photothermal conversion efficiency. Chinese Chemical Letters, 2025, 36(4): 110027-. doi: 10.1016/j.cclet.2024.110027

    5. [5]

      Xiangqian CaoChenkai YangXiaodong ZhuMengxin ZhaoYilin YanZhengnan HuangJinming CaiJingming ZhuangShengzhou LiWei LiBing Shen . Synergistic enhancement of chemotherapy for bladder cancer by photothermal dual-sensitive nanosystem with gold nanoparticles and PNIPAM. Chinese Chemical Letters, 2024, 35(8): 109199-. doi: 10.1016/j.cclet.2023.109199

    6. [6]

      Yongkang YueZhou XuKaiqing MaFangjun HuoXuemei QinKuanshou ZhangCaixia Yin . HSA shrinkage optimizes the photostability of embedded dyes fundamentally to amplify their efficiency as photothermal materials. Chinese Chemical Letters, 2024, 35(8): 109223-. doi: 10.1016/j.cclet.2023.109223

    7. [7]

      Yiqiao ChenAo LiuBiwen YangZhenzhen LiBinggang YeZhouyi GuoZhiming LiuHaolin Chen . Photoluminescence and photothermal conversion in boric acid derived carbon dots for targeted microbial theranostics. Chinese Chemical Letters, 2024, 35(9): 109295-. doi: 10.1016/j.cclet.2023.109295

    8. [8]

      Songtao CaiLiuying WuYuan LiSoham SamantaJinying WangBing LiuFeihu WuKaitao LaiYingchao LiuJunle QuZhigang Yang . Intermolecular hydrogen-bonding as a robust tool toward significantly improving the photothermal conversion efficiency of a NIR-II squaraine dye. Chinese Chemical Letters, 2024, 35(4): 108599-. doi: 10.1016/j.cclet.2023.108599

    9. [9]

      Tingting HuChao ShenXueyan WangFengbo WuZhiyao He . Tumor microenvironment-sensitive polymeric nanoparticles for synergetic chemo-photo therapy. Chinese Chemical Letters, 2024, 35(11): 109562-. doi: 10.1016/j.cclet.2024.109562

    10. [10]

      Tianze WangJunyi RenDongxiang ZhangHuan WangJianjun DuXin-Dong JiangGuiling Wang . Development of functional dye with redshifted absorption based on Knoevenagel condensation at 1-site in phenyl[b]-fused BODIPY. Chinese Chemical Letters, 2024, 35(6): 108862-. doi: 10.1016/j.cclet.2023.108862

    11. [11]

      Di AnMingdong SheZiyang ZhangTing ZhangMiaomiao XuJinjun ShaoQian ShenXuna Tang . Light-responsive nanomaterials for biofilm removal in root canal treatment. Chinese Chemical Letters, 2025, 36(2): 109841-. doi: 10.1016/j.cclet.2024.109841

    12. [12]

      Shihong WuRonghui ZhouHang ZhaoPeng Wu . Sonoafterglow luminescence for in vivo deep-tissue imaging. Chinese Chemical Letters, 2024, 35(10): 110026-. doi: 10.1016/j.cclet.2024.110026

    13. [13]

      Gongcheng MaQihang DingYuding ZhangYue WangJingjing XiangMingle LiQi ZhaoSaipeng HuangPing GongJong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293

    14. [14]

      Ze WangHao LiangAnnan LiuXingchen LiLin GuanLei LiLiang HeAndrew K. WhittakerBai YangQuan Lin . Strength through unity: Alkaline phosphatase-responsive AIEgen nanoprobe for aggregation-enhanced multi-mode imaging and photothermal therapy of metastatic prostate cancer. Chinese Chemical Letters, 2025, 36(2): 109765-. doi: 10.1016/j.cclet.2024.109765

    15. [15]

      Jia-Cheng HouHong-Tao JiYu-Han LuJia-Sheng WangYao-Dan XuYan-Yan ZengWei-Min He . Sustainable and practical semi-heterogeneous photosynthesis of 5-amino-1,2,4-thiadiazoles over WS2/TEMPO. Chinese Chemical Letters, 2024, 35(8): 109514-. doi: 10.1016/j.cclet.2024.109514

    16. [16]

      Tao LIUYuting TIANKe GAOXuwei HANRu'nan MINWenjing ZHAOXueyi SUNCaixia YIN . A photothermal agent with high photothermal conversion efficiency and high stability for tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1622-1632. doi: 10.11862/CJIC.20240107

    17. [17]

      Zihong LiJie ChengPing HuangGuoliang WuWeiying Lin . Activatable photoacoustic bioprobe for visual detection of aging in vivo. Chinese Chemical Letters, 2024, 35(4): 109153-. doi: 10.1016/j.cclet.2023.109153

    18. [18]

      Peng JiaYunna GuoDongliang ChenXuedong ZhangJingming YaoJianguo LuLiqiang ZhangIn-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624

    19. [19]

      Haijun ShenYi QiaoChun ZhangYane MaJialing ChenYingying CaoWenna Zheng . A matrix metalloproteinase-sensitive hydrogel combined with photothermal therapy for transdermal delivery of deferoxamine to accelerate diabetic pressure ulcer healing. Chinese Chemical Letters, 2024, 35(12): 110283-. doi: 10.1016/j.cclet.2024.110283

    20. [20]

      Lulu CaoYikun LiDongxiang ZhangShuai YueRong ShangXin-Dong JiangJianjun Du . Engineering aggregates of julolidine-substituted aza-BODIPY nanoparticles for NIR-II photothermal therapy. Chinese Chemical Letters, 2024, 35(12): 109735-. doi: 10.1016/j.cclet.2024.109735

Metrics
  • PDF Downloads(0)
  • Abstract views(739)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return