Citation: Chun-Xian He, Hui Meng, Xiang Zhang, Hua-Qing Cui, Da-Li Yin. Synthesis and bio-evaluation of phenothiazine derivatives as new antituberculosis agents[J]. Chinese Chemical Letters, ;2015, 26(8): 951-954. doi: 10.1016/j.cclet.2015.03.027 shu

Synthesis and bio-evaluation of phenothiazine derivatives as new antituberculosis agents

  • Corresponding author: Hua-Qing Cui,  Da-Li Yin, 
  • Received Date: 1 December 2014
    Available Online: 4 March 2015

    Fund Project:

  • Two series of phenothiazine derivatives were designed and synthesized. All compounds were tested for anti-tuberculosis activities against Mycobacterium tuberculosis H37RV. In comparison with mother compound of chlorpromazine, compound 6e shows promising anti-tuberculosis activity and much less mammalian cell cytotoxicity, compound 6e merits to be further explored as new anti-tuberculosis agents.
  • 加载中
    1. [1]

      [1] A. Koul, E. Arnoult, N. Lounis, J. Guillemont, K. Andries, The challenge of new drug discovery for tuberculosis, Nature 469 (2011) 483-490.

    2. [2]

      [2] M.D. Iseman, Tuberculosis therapy: past, present and future, Eur. Respir. J. Suppl. 36 (2002) 87s-94s.

    3. [3]

      [3] WHO Publishes Global Tuberculosis Report 2013, Euro surveillance: bulletin Europeen sur les maladies transmissibles, Eur. Commun. Dis. Bull. 18 (2013).

    4. [4]

      [4] C. Nathan, Drug-resistant tuberculosis: a new shot on goal, Nat. Med. 20 (2014) 121-123.

    5. [5]

      [5] E. Pontali, A. Matteelli, G.B. Migliori, Drug-resistant tuberculosis, Curr. Opin. Pulm. Med. 19 (2013) 266-272.

    6. [6]

      [6] N. Motohashi, S.R. Gollapudi, J. Emrani, K.R. Bhattiprolu, Antitumor properties of phenothiazines, Cancer Invest. 9 (1991) 305-319.

    7. [7]

      [7] L. Amaral, M. Viveiros, J. Molnar, Antimicrobial activity of phenothiazines, In Vivo 18 (2004) 725-731.

    8. [8]

      [8] C. Miskolci, I. Labadi, T. Kurihara, N. Motohashi, J. Molnar, Guanine-cytosine rich regions of plasmid DNA can be the target in anti-plasmid effect of phenothiazines, Int. J. Antimicrob. Agents 14 (2000) 243-247.

    9. [9]

      [9] L. Amaral, J.E. Kristiansen, M. Viveiros, J. Atouguia, Activity of phenothiazines against antibiotic-resistant Mycobacterium tuberculosis: a review supporting further studies that may elucidate the potential use of thioridazine as anti-tuberculosis therapy, J. Antimicrob. Chemother. 47 (2001) 505-511.

    10. [10]

      [10] P.B. Madrid, W.E. Polgar, L. Toll, M.J. Tanga, Synthesis and antitubercular activity of phenothiazines with reduced binding to dopamine and serotonin receptors, Bioorg. Med. Chem. Lett. 17 (2007) 3014-3017.

    11. [11]

      [11] L. Amaral, A. Martins, G. Spengler, A. Hunyadi, J. Molnar, The mechanism by which the phenothiazine thioridazine contributes to cure problematic drug-resistant forms of pulmonary tuberculosis: recent patents for "new use", Recent Pat Antiinfective Drug Discov 8 (2013) 206-212.

    12. [12]

      [12] L. Amaral, M. Martins, M. Viveiros, J. Molnar, J.E. Kristiansen, Promising therapy of XDR-TB/MDR-TB with thioridazine an inhibitor of bacterial efflux pumps, Curr. Drug Targets 9 (2008) 816-819.

    13. [13]

      [13] L.E. Hollister, D.T. Eikenberry, S. Raffel, Chlorpromazine in nonpsychotic patients with pulmonary tuberculosis, Am. Rev. Respir. Dis. 81 (1960) 562-566.

    14. [14]

      [14] B. Beckmann, H. Hippius, E. Ruther, Treatment of schizophrenia, Prog. Neuropsychopharmacol. 3 (1979) 47-52.

    15. [15]

      [15] S. Kapur, R.B. Zipursky, G. Remington, Clinical and theoretical implications of 5-HT2 and D2 receptor occupancy of clozapine, risperidone, and olanzapine in schizophrenia, Am. J. Psychiatry 156 (1999) 286-293.

    16. [16]

      [16] P. Ratnakar, S.P. Rao, P. Sriramarao, P.S. Murthy, Structure-antitubercular activity relationship of phenothiazine-type calmodulin antagonists, Int. Clin. Psychopharmacol. 10 (1995) 39-43.

    17. [17]

      [17] D. Addla, A. Jallapally, D. Gurram, et al., Rational design, synthesis and antitubercular evaluation of novel 2-(trifluoromethyl)phenothiazine-[1,2,3]triazole hybrids, Bioorg. Med. Chem. Lett. 24 (2014) 233-236.

    18. [18]

      [18] A.P. Feinberg, S.H. Snyder, Phenothiazine drugs: structure-activity relationships explained by a conformation that mimics dopamine, Proc. Natl. Acad. Sci. U. S. A. 72 (1975) 1899-1903.

    19. [19]

      [19] A. Jaszczyszyn, K. Gasiorowski, P. Swiatek, et al., Chemical structure of phenothiazines and their biological activity, Pharmacol. Rep. 64 (2012) 16-23.

    20. [20]

      [20] E. Cox, K. Laessig, FDA approval of bedaquiline -the benefit-risk balance for drugresistant tuberculosis, N. Engl. J. Med. 371 (2014) 689-691.

    21. [21]

      [21] K. Andries, P. Verhasselt, J. Guillemont, et al., A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis, Science 307 (2005) 223-227.

    22. [22]

      [22] D. Cummins, G. Boschloo, M. Ryan, et al., Ultrafast electrochromic windows based on redox-chromophore modified nanostructured semiconducting and conducting films, J. Phys. Chem. B 104 (2000) 11449-11459.

    23. [23]

      [23] Y. Lu, M. Zheng, B. Wang, et al., Clofazimine analogs with efficacy against experimental tuberculosis and reduced potential for accumulation, Antimicrob. Agents Chemother. 55 (2011) 5185-5193.

    24. [24]

      [24] H. Cui, J. Carrero-Lerida, A.P. Silva, et al., Synthesis and evaluation of alphathymidine analogues as novel antimalarials, J. Med. Chem. 55 (2012) 10948-10957.

  • 加载中
    1. [1]

      Haiyang Gu Xiang Xu . Multicolor hybrid metal halides and anti-counterfeiting. Chinese Journal of Structural Chemistry, 2024, 43(9): 100352-100352. doi: 10.1016/j.cjsc.2024.100352

    2. [2]

      Wenhao YanShuaiya XueXuerui ZhaoWei ZhangJian Li . Hexagonal boron nitride based slippery liquid infused porous surface with anti-corrosion, anti-contaminant and anti-icing properties for protecting magnesium alloy. Chinese Chemical Letters, 2024, 35(4): 109224-. doi: 10.1016/j.cclet.2023.109224

    3. [3]

      Kun Zhang Ni Dan Dan-Dan Ren Ruo-Yu Zhang Xiaoyan Lu Ya-Pan Wu Li-Lei Zhang Hong-Ru Fu Dong-Sheng Li . A small D-A molecule with highly heat-resisting room temperature phosphorescence for white emission and anti-counterfeiting. Chinese Journal of Structural Chemistry, 2024, 43(3): 100244-100244. doi: 10.1016/j.cjsc.2024.100244

    4. [4]

      Qiang LiJiangbo FanHongkai MuLin ChenYongzhen YangShiping Yu . Nucleus-targeting orange-emissive carbon dots delivery adriamycin for enhanced anti-liver cancer therapy. Chinese Chemical Letters, 2024, 35(6): 108947-. doi: 10.1016/j.cclet.2023.108947

    5. [5]

      Ji ZhangTong ZhangQiao AnPeng ZhangCai-Yan TianChun-Mao YuanPing YiZhan-Xing HuXiao-Jiang Hao . Five quinolizidine alkaloids with anti-tobacco mosaic virus activities from two species of Sophora. Chinese Chemical Letters, 2024, 35(6): 108927-. doi: 10.1016/j.cclet.2023.108927

    6. [6]

      Xiaoning LiQuanyu ShiMeng LiNingxin SongYumeng XiaoHuining XiaoTony D. JamesLei Feng . Functionalization of cellulose carbon dots with different elements (N, B and S) for mercury ion detection and anti-counterfeit applications. Chinese Chemical Letters, 2024, 35(7): 109021-. doi: 10.1016/j.cclet.2023.109021

    7. [7]

      Changle Liu Mingyuzhi Sun Haoran Zhang Xiqian Cao Yuqing Li Yingtang Zhou . All in one doubly pillared MXene membrane for excellent oil/water separation, pollutant removal, and anti-fouling performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100355-100355. doi: 10.1016/j.cjsc.2024.100355

    8. [8]

      Jiayin ZhouDepeng LiuLongqiang LiMin QiGuangqiang YinTao Chen . Responsive organic room-temperature phosphorescence materials for spatial-time-resolved anti-counterfeiting. Chinese Chemical Letters, 2024, 35(11): 109929-. doi: 10.1016/j.cclet.2024.109929

    9. [9]

      Kexin YinJingren YangYanwei LiQian LiXing Xu . Metal-free diatomaceous carbon-based catalyst for ultrafast and anti-interference Fenton-like oxidation. Chinese Chemical Letters, 2024, 35(12): 109847-. doi: 10.1016/j.cclet.2024.109847

    10. [10]

      Jianwen ZhaoShuai WangShanshan ZhaoLiwei ChenFangang MengXuelin Tian . A non-fluorinated liquid-like membrane with excellent anti-scaling performance for membrane distillation. Chinese Chemical Letters, 2025, 36(1): 109883-. doi: 10.1016/j.cclet.2024.109883

    11. [11]

      Liqing ChenZheming ZhangYanhong LiuChenfei LiuCongcong XiaoLiming GongMingji JinZhonggao GaoWei Huang . Systemically intravenous siRNA delivery into brain with a targeting and efficient polypeptide carrier and its evaluation on anti-glioma efficacy. Chinese Chemical Letters, 2025, 36(3): 110228-. doi: 10.1016/j.cclet.2024.110228

    12. [12]

      Yunfen GaoLiying WangChufan ZhouYi ZhaoHai HuangJun Wu . Low-dimensional antimicrobial nanomaterials in anti-infection treatment and wound healing. Chinese Chemical Letters, 2025, 36(3): 110028-. doi: 10.1016/j.cclet.2024.110028

    13. [13]

      Chunlei DaiLiying WangXinru YouYi ZhaoZhong CaoJun Wu . Coffee-derived self-anti-inflammatory polymer as drug nanocarrier for enhanced rheumatoid arthritis treatment. Chinese Chemical Letters, 2025, 36(3): 109869-. doi: 10.1016/j.cclet.2024.109869

    14. [14]

      Zhexin ChenYuqing ShiFang ZhongKai ZhangFurong ZhangShenghong XieZhongbin ChengQian ZhouYi-You HuangHai-Bin Luo . Discovery of amentoflavone as a natural PDE4 inhibitor with anti-fibrotic effects. Chinese Chemical Letters, 2025, 36(4): 109956-. doi: 10.1016/j.cclet.2024.109956

    15. [15]

      Bingyang LuDehui WangJunchang GuoYang ShenQian FengJinlong YangXiao HanHuali YuLuohuizi LiJiaxin LiuJing LuoHuan LiuZhongwei ZhangXu Deng . High-efficiency exudates drainage of anti-adhesion dressings for chronic wound. Chinese Chemical Letters, 2025, 36(4): 110601-. doi: 10.1016/j.cclet.2024.110601

    16. [16]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    17. [17]

      Xiaoyao MaJinling ZhangGe FangHe GaoJie GaoLi FuYuanyuan HouGang Bai . Förster resonance energy transfer reveals phillygenin and swertiamarin concurrently target AKT on different binding domains to increase the anti-inflammatory effect. Chinese Chemical Letters, 2024, 35(5): 108823-. doi: 10.1016/j.cclet.2023.108823

    18. [18]

      Wenjia WangXingyue HeXiaojie WangTiantian ZhaoOsamu MuraokaGenzoh TanabeWeijia XieTianjiao ZhouLei XingQingri JinHulin Jiang . Glutathione-depleted cyclodextrin pseudo-polyrotaxane nanoparticles for anti-inflammatory oxaliplatin (Ⅳ) prodrug delivery and enhanced colorectal cancer therapy. Chinese Chemical Letters, 2024, 35(4): 108656-. doi: 10.1016/j.cclet.2023.108656

    19. [19]

      Xue-Jiao WangJun-Li XinHong XiangZe-Yu ZhaoYu-Hang HeHaibo WangGuangyao MeiYi-Cheng MaoJuan XiongJin-Feng Hu . Holotrichones A and B, potent anti-leukemic lindenane-type sesquiterpene trimers with unprecedented complex carbon skeletons from a rare Chloranthus species. Chinese Chemical Letters, 2024, 35(12): 109682-. doi: 10.1016/j.cclet.2024.109682

    20. [20]

      Xiongbo SongJinwen XiaoJuan WuLi SunLong Chen . Decellularized amniotic membrane promotes the anti-inflammatory response of macrophages via PI3K/AKT/HIF-1α pathway. Chinese Chemical Letters, 2025, 36(1): 109844-. doi: 10.1016/j.cclet.2024.109844

Metrics
  • PDF Downloads(0)
  • Abstract views(745)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return