Citation: Shuai Wei, Charles L. Brooks Ⅲ. Stability and orientation of cecropin P1 on maleimide self-assembled monolayer (SAM) surfaces and suggested functional mutations[J]. Chinese Chemical Letters, ;2015, 26(4): 485-490. doi: 10.1016/j.cclet.2015.03.020 shu

Stability and orientation of cecropin P1 on maleimide self-assembled monolayer (SAM) surfaces and suggested functional mutations

  • Received Date: 28 January 2015
    Available Online: 10 March 2015

  • One of the main challenges of biosensor design is to understand the protein or peptide stability on the chip in high resolution structural detail. Since conventional experimental methods are limited by the resolution for their applications on surface tethered peptides/proteins, a recently developed coarse grained simulation method is employed to explore the peptide/surface interaction in residue-level resolution. This work shows how the coarse grained model successfully describes peptide-surface interactions by evaluating thermal stability of the peptide cecropin P1 in bulk solution and on surfaces by physical adsorption and chemical tethering. The simulation also reproduces observations of peptide orientations on the self-assembled monolayer surface from earlier experimental work. Additionally, using knowledge obtained from the simulations, specific mutations are suggested and the desired structure and pose on the surface is obtained. In summary, this work sheds a light on the reasonable biosensor design that is guided by simulations.
  • 加载中
    1. [1]

      [1] P. Billsten, M. Wahlgren, T. Arnebrant, J. McGuire, H. Elwing, Structural changes of T4 lysozyme upon adsorption to silica nanoparticles measured by circular dichroism, J. Colloid Interface Sci. 175 (1995) 77-82.

    2. [2]

      [2] C. Czeslik, R. Winter, Effect of temperature on the conformation of lysozyme adsorbed to silica particles, Phys. Chem. Chem. Phys. 3 (2001) 235-239.

    3. [3]

      [3] M.F. Engel, A.J. Visser, C.P. van Mierlo, Conformation and orientation of a protein folding intermediate trapped by adsorption, Proc. Natl. Acad. Sci. U.S.A. 101 (2004) 11316-11321.

    4. [4]

      [4] J.J. Gray, The interaction of proteins with solid surfaces, Curr. Opin. Struct. Biol. 14 (2004) 110-115.

    5. [5]

      [5] T. Joos, J. Bachmann, Protein microarrays: potentials and limitations, Front. Biosci. (Landmark ed.) 14 (2009) 4376-4385.

    6. [6]

      [6] H. Larsericsdotter, S. Oscarsson, J. Buijs, Thermodynamic analysis of lysozyme adsorbed to silica, J. Colloid Interface Sci. 276 (2004) 261-268.

    7. [7]

      [7] K. Nakanishi, T. Sakiyama, K. Imamura, On the adsorption of proteins on solid surfaces, a common but very complicated phenomenon, J. Biosci. Bioeng. 91 (2001) 233-244.

    8. [8]

      [8] A.A. Mary, S. Aleksandr, Novel trends in affinity biosensors: current challenges and perspectives, Meas. Sci. Technol. 25 (2014) 032001.

    9. [9]

      [9] M. Cretich, G. Pirri, F. Damin, I. Solinas, M. Chiari, A new polymeric coating for protein microarrays, Anal. Biochem. 332 (2004) 67-74.

    10. [10]

      [10] W. Kusnezow, A. Jacob, A. Walijew, F. Diehl, J.D. Hoheisel, Antibody microarrays: an evaluation of production parameters, Proteomics 3 (2003) 254-264.

    11. [11]

      [11] E. Delamarche, A. Bernard, H. Schmid, et al., Microfluidic Networks for chemical patterning of substrates: design and application to bioassays, J. Am. Chem. Soc. 120 (1998) 500-508.

    12. [12]

      [12] K.L. Prime, G.M. Whitesides, Adsorption of proteins onto surfaces containing endattached oligo(ethylene oxide): a model system using self-assembled monolayers, J. Am. Chem. Soc. 115 (1993) 10714-10721.

    13. [13]

      [13] X. Han, Y. Liu, F.G. Wu, et al., Different interfacial behaviors of peptides chemically immobilized on surfaces with different linker lengths and via different termini, J. Phys. Chem. B 118 (2014) 2904-2912.

    14. [14]

      [14] C.E. Giacomelli, M.G. Bremer, W. Norde, ATR-FTIR Study of IgG adsorbed on different silica surfaces, J. Colloid Interface Sci. 220 (1999) 13-23.

    15. [15]

      [15] C.E. Giacomelli, W. Norde, The adsorption-desorption cycle. Reversibility of the BSA-silica system, J. Colloid Interface Sci. 233 (2001) 234-240.

    16. [16]

      [16] D.T. Kim, H.W. Blanch, C.J. Radke, Direct imaging of lysozyme adsorption onto mica by atomic force microscopy, Langmuir 18 (2002) 5841-5850.

    17. [17]

      [17] J.R. Long, W.J. Shaw, P.S. Stayton, G.P. Drobny, Structure and dynamics of hydrated statherin on hydroxyapatite as determined by solid-state NMR, Biochemistry 40 (2001) 15451-15455.

    18. [18]

      [18] J.S. Sharp, J.A. Forrest, R.A. Jones, Surface denaturation and amyloid fibril formation of insulin at model lipid-water interfaces, Biochemistry 41 (2002) 15810-15819.

    19. [19]

      [19] Y.I. Tarasevich, L.I. Monakhova, Interaction between globular proteins and silica surfaces, Colloid J. 64 (2002) 482-487.

    20. [20]

      [20] R.A. Latour, Perspectives on the simulation of protein-surface interactions using empirical force field methods, Colloids Surf. B Biointerfaces 124 (2014) 25-37.

    21. [21]

      [21] S. Wei, T.A. Knotts IV, Predicting stability of a-helical, orthogonal-bundle proteins on surfaces, J. Chem. Phys. 133 (2010) 115102.

    22. [22]

      [22] S. Wei, T.A. Knotts IV, Effects of tethering a multistate folding protein to a surface, J. Chem. Phys. 134 (2011) 185101.

    23. [23]

      [23] J. Liu, C. Liao, J. Zhou, Multiscale simulations of protein G B1 adsorbed on charged self-assembled monolayers, Langmuir 29 (2013) 11366-11374.

    24. [24]

      [24] J. Liu, G. Yu, J. Zhou, Ribonuclease A adsorption onto charged self-assembled monolayers: a multiscale simulation study, Chem. Eng. Sci. 121 (2015) 331-339.

    25. [25]

      [25] Y. Xie, M. Liu, J. Zhou, Molecular dynamics simulations of peptide adsorption on self-assembled monolayers, Appl. Surf. Sci. 258 (2012) 8153-8159.

    26. [26]

      [26] Y. Xie, J. Zhou, S. Jiang, Parallel tempering monte carlo simulations of lysozyme orientation on charged surfaces, J. Chem. Phys. 132 (2010) 065101.

    27. [27]

      [27] G. Yu, J. Liu, J. Zhou, Mesoscopic coarse-grained simulations of lysozyme adsorption, J. Chem. Phys. B 118 (2014) 4451-4460.

    28. [28]

      [28] J. Zhou, S. Chen, S. Jiang, Orientation of adsorbed antibodies on charged surfaces by computer simulation based on a united-residue model, Langmuir 19 (2003) 3472-3478.

    29. [29]

      [29] J. Zhou, J. Zheng, S. Jiang, Molecular simulation studies of the orientation and conformation of cytochrome c adsorbed on self-assembled monolayers, J. Chem. Phys. B 108 (2004) 17418-17424.

    30. [30]

      [30] Z. Wu, Q. Cui, A. Yethiraj, A new coarse-grained model for water: the importance of electrostatic interactions, J. Chem. Phys. B 114 (2010) 10524-10529.

    31. [31]

      [31] Z. Wu, Q. Cui, A. Yethiraj, A new coarse-grained force field for membrane-peptide simulations, J. Chem. Theory Comput. 7 (2011) 3793-3802.

    32. [32]

      [32] S. Wei, T.A. Knotts IV, A coarse grain model for protein-surface interactions, J. Chem. Phys. 139 (2013) 095102.

    33. [33]

      [33] E. Gazit, I.R. Miller, P.C. Biggin, M.S. Sansom, Y. Shai, Structure and orientation of the mammalian antibacterial peptide cecropin P1 within phospholipid membranes, J. Mol. Biol. 258 (1996) 860-870.

    34. [34]

      [34] D. Sipos, M. Andersson, A. Ehrenberg, The structure of the mammalian antibacterial peptide cecropin P1 in solution, determined by proton-NMR, Eur. J. Biochem./ FEBS 209 (1992) 163-169.

    35. [35]

      [35] S. Ye, K.T. Nguyen, A.P. Boughton, C.M. Mello, Z. Chen, Orientation difference of chemically immobilized and physically adsorbed biological molecules on polymers detected at the solid/liquid interfaces in situ, Langmuir 26 (2010) 6471- 6477.

    36. [36]

      [36] X. Han, J.R. Uzarski, C.M. Mello, Z. Chen, Different interfacial behaviors of N- and Cterminus cysteine-modified cecropin P1 chemically immobilized onto polymer surface, Langmuir 29 (2013) 11705-11712.

    37. [37]

      [37] J. Karanicolas, C.L. Brooks III, Improved Go-like models demonstrate the robustness of protein folding mechanisms towards non-native interactions, J. Mol. Biol. 334 (2003) 309-325.

    38. [38]

      [38] J. Karanicolas, C.L. Brooks III, The structural basis for biphasic kinetics in the folding of the WW domain from a formin-binding protein: lessons for protein design? Proc. Natl. Acad. Sci. U.S.A. 100 (2003) 3954-3959.

    39. [39]

      [39] J. Karanicolas, C.L. Brooks III, Integrating folding kinetics and protein function: biphasic kinetics and dual binding specificity in a WW domain, Proc. Natl. Acad. Sci. U.S.A. 101 (2004) 3432-3437.

    40. [40]

      [40] R.D. Hills Jr., C.L. Brooks III, Insights from coarse-grained Go models for protein folding and dynamics, Int. J. Mol. Cell Med. 10 (2009) 889-905.

    41. [41]

      [41] T.J. Schmitt, J.E. Clark, T.A. Knotts IV, Thermal and mechanical multistate folding of ribonuclease H, J. Chem. Phys. 131 (2009) 235101.

    42. [42]

      [42] Y. Wei, R.A. Latour, Benchmark experimental data set and assessment of adsorption free energy for peptide-surface interactions, Langmuir 25 (2009) 5637- 5646.

    43. [43]

      [43] Y. Wei, R.A. Latour, Correlation between desorption force measured by atomic force microscopy and adsorption free energy measured by surface plasmon resonance spectroscopy for peptide-surface interactions, Langmuir 26 (2010) 18852-18861.

    44. [44]

      [44] D.L. Nelson, M.M. Cox, Lehninger Principles of Biochemistry, W.H. Freeman, 2013.

    45. [45]

      [45] X. Wang, D. Zhou, T. Rayment, C. Abell, Systematic manipulation of surface chemical reaction on the nanoscale: a novel approach for constructing threedimensional nanostructures, Chem. Commun. (2003) 474-475.

    46. [46]

      [46] S. Kumar, J.M. Rosenberg, D. Bouzida, R.H. Swendsen, P.A. Kollman, THE weighted histogram analysis method for free-energy calculations on biomolecules. I. The method, J. Comput. Chem. 13 (1992) 1011-1021.

    47. [47]

      [47] C.N. Pace, J.M. Scholtz, A helix propensity scale based on experimental studies of peptides and proteins, Biophys. J. 75 (1998) 422-427.

  • 加载中
    1. [1]

      Bo YangPu-An LinTingwei ZhouXiaojia ZhengBing CaiWen-Hua Zhang . Facile surface regulation for highly efficient and thermally stable perovskite solar cells via chlormequat chloride. Chinese Chemical Letters, 2024, 35(10): 109425-. doi: 10.1016/j.cclet.2023.109425

    2. [2]

      Guizhi ZhuJunrui TanLongfei TanQiong WuXiangling RenChanghui FuZhihui ChenXianwei Meng . Growth of CeCo-MOF in dendritic mesoporous organosilica as highly efficient antioxidant for enhanced thermal stability of silicone rubber. Chinese Chemical Letters, 2025, 36(1): 109669-. doi: 10.1016/j.cclet.2024.109669

    3. [3]

      Shunshun JiangJi ZhangJing WangShan-Tao Zhang . Excellent energy storage properties in non-stoichiometric Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics. Chinese Chemical Letters, 2024, 35(7): 108955-. doi: 10.1016/j.cclet.2023.108955

    4. [4]

      Huimin Gao Zhuochen Yu Xuze Zhang Xiangkun Yu Jiyuan Xing Youliang Zhu Hu-Jun Qian Zhong-Yuan Lu . A mini review of the recent progress in coarse-grained simulation of polymer systems. Chinese Journal of Structural Chemistry, 2024, 43(5): 100266-100266. doi: 10.1016/j.cjsc.2024.100266

    5. [5]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . 设计热力学稳定的贵金属单原子光催化剂用于乙醇的高效非氧化转化形成高纯氢和增值产物乙醛. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    6. [6]

      Zheng Zhao Ben Zhong Tang . An efficient strategy enabling solution processable thermally activated delayed fluorescence emitter with high horizontal dipole orientation. Chinese Journal of Structural Chemistry, 2024, 43(6): 100270-100270. doi: 10.1016/j.cjsc.2024.100270

    7. [7]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    8. [8]

      Xinzhi Ding Chong Liu Jing Niu Nan Chen Shutao Xu Yingxu Wei Zhongmin Liu . Solid-state NMR study of the stability of MOR framework aluminum. Chinese Journal of Structural Chemistry, 2024, 43(4): 100247-100247. doi: 10.1016/j.cjsc.2024.100247

    9. [9]

      Jingyuan YangXinyu TianLiuzhong YuanYu LiuYue WangChuandong Dou . Enhancing stability of diradical polycyclic hydrocarbons via P=O-attaching. Chinese Chemical Letters, 2024, 35(8): 109745-. doi: 10.1016/j.cclet.2024.109745

    10. [10]

      Ting WangXin YuYaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320

    11. [11]

      Tao LIUYuting TIANKe GAOXuwei HANRu'nan MINWenjing ZHAOXueyi SUNCaixia YIN . A photothermal agent with high photothermal conversion efficiency and high stability for tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1622-1632. doi: 10.11862/CJIC.20240107

    12. [12]

      Zhengzhong ZhuShaojun HuZhi LiuLipeng ZhouChongbin TianQingfu Sun . A cationic radical lanthanide organic tetrahedron with remarkable coordination enhanced radical stability. Chinese Chemical Letters, 2025, 36(2): 109641-. doi: 10.1016/j.cclet.2024.109641

    13. [13]

      Ruizhi Yang Xia Li Weiping Guo Zixuan Chen Hongwei Ming Zhong-Zhen Luo Zhigang Zou . New thermoelectric semiconductors Pb5Sb12+xBi6-xSe32 with ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(3): 100268-100268. doi: 10.1016/j.cjsc.2024.100268

    14. [14]

      Chaozheng HePei ShiDonglin PangZhanying ZhangLong LinYingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116

    15. [15]

      Zhiqing GeZuxiong PanShuo YanBaoying ZhangXiangyu ShenMozhen WangXuewu Ge . Novel high-temperature thermochromic polydiacetylene material and its application as thermal indicator. Chinese Chemical Letters, 2024, 35(11): 109850-. doi: 10.1016/j.cclet.2024.109850

    16. [16]

      Shuai Liang Wen-Jing Jiang Ji-Xiang Hu . Achieving colossal anisotropic thermal expansion via synergism of spin crossover and rhombus deformation. Chinese Journal of Structural Chemistry, 2025, 44(2): 100430-100430. doi: 10.1016/j.cjsc.2024.100430

    17. [17]

      Shiyu HouMaolin SunLiming CaoChaoming LiangJiaxin YangXinggui ZhouJinxing YeRuihua Cheng . Computational fluid dynamics simulation and experimental study on mixing performance of a three-dimensional circular cyclone-type microreactor. Chinese Chemical Letters, 2024, 35(4): 108761-. doi: 10.1016/j.cclet.2023.108761

    18. [18]

      Sanmei WangYong ZhouHengxin FangChunyang NieChang Q SunBiao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476

    19. [19]

      Zhibin RenShan LiXiaoying LiuGuanghao LvLei ChenJingli WangXingyi LiJiaqing Wang . Penetrating efficiency of supramolecular hydrogel eye drops: Electrostatic interaction surpasses ligand-receptor interaction. Chinese Chemical Letters, 2024, 35(11): 109629-. doi: 10.1016/j.cclet.2024.109629

    20. [20]

      Yi Herng ChanZhe Phak ChanSerene Sow Mun LockChung Loong YiinShin Ying FoongMee Kee WongMuhammad Anwar IshakVen Chian QuekShengbo GeSu Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329

Metrics
  • PDF Downloads(0)
  • Abstract views(582)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return