Citation:
Feng-Ming Lin, E. Neil G. Marsh, Xiaoxia Nina Lin. Recent progress in hydrocarbon biofuel synthesis: Pathways and enzymes[J]. Chinese Chemical Letters,
;2015, 26(4): 431-434.
doi:
10.1016/j.cclet.2015.03.018
-
Biofuels derived from hydrocarbon biosynthetic pathways have attracted increasing attention. Routes to hydrocarbon biofuels are emerging and mainly fall into two categories based on the metabolic pathways utilized: Fatty acid pathway-based alkanes/alkenes and isoprenoid biosynthetic pathway based terpenes. The primary focus of this review is on recent progress in the application of hydrocarbon biosynthetic pathways for hydrocarbon biofuel production, together with studies on enzymes, including efforts to engineering them for improved performance.
-
-
-
[1]
[1] A. Bernard, J. Joubès, Arabidopsis cuticular waxes: advances in synthesis, export and regulation, Prog. Lipid. Res. 52 (2013) 110-29.
-
[2]
[2] T.M. Cheesbrough, P.E. Kolattukudy, Microsomal preparation from an animal tissue catalyzes release of carbon monoxide from a fatty aldehyde to generate an alkane, J. Biol. Chem. 263 (1988) 2738-743.
-
[3]
[3] R.W. Howard, G.J. Blomquist, Ecological, behavioral, and biochemical aspects of insect hydrocarbons, Annu. Rev. Entomol. 50 (2005) 371-93.
-
[4]
[4] M.W. Dennis, P.E. Kolattukudy, Alkane biosynthesis by decarbonylation of aldehyde catalyzed by a microsomal preparation from botryococcus braunii, Arch. Biochem. Biophys. 287 (1991) 268-75.
-
[5]
[5] A. Schirmer, M.A. Rude, X. Li, et al., Microbial biosynthesis of alkanes, Science 329 (2010) 559-62.
-
[6]
[6] M.K. Akhtar, N.J. Turner, P.R. Jones, Carboxylic acid reductase is a versatile enzyme for the conversion of fatty acids into fuels and chemical commodities, Proc. Natl. Acad. Sci. U. S. A. 110 (2013) 87-2.
-
[7]
[7] M.A. Rude, T.S. Baron, S. Brubaker, et al., Terminal olefin (1-alkene) biosynthesis by a novel p450 fatty acid decarboxylase from Jeotgalicoccus species, Appl. Environ. Microbiol. 77 (2011) 1718-727.
-
[8]
[8] D. Mendez-Perez, M.B. Begemann, B.F. Pfleger, Modular synthase-encoding gene involved in a-olefin biosynthesis in Synechococcus sp. Strain pcc 7002, Appl. Environ. Microbiol. 77 (2011) 4264-267.
-
[9]
[9] D. Mendez-Perez, S. Gunasekaran, V.J. Orler, et al., A translation-coupling DNA cassette for monitoring protein translation in Escherichia coli, Metab. Eng. 14 (2012) 298-05.
-
[10]
[10] H.R. Beller, E.-B. Goh, J.D. Keasling, Genes involved in long-chain alkene biosynthesis in Micrococcus luteus, Appl. Environ. Microbiol. 76 (2010) 1212-223.
-
[11]
[11] D. Das, B.E. Eser, J. Han, et al., Oxygen-independent decarbonylation of aldehydes by cyanobacterial aldehyde decarbonylase: a new reaction of diiron enzymes, Angew. Chem. Int. Ed. 50 (2011) 7148-152.
-
[12]
[12] N. Li, H. N鴕gaard, D.M. Warui, et al., Conversion of fatty aldehydes to alka(e)nes and formate by a cyanobacterial aldehyde decarbonylase: cryptic redox by an unusual dimetal oxygenase, J. Am. Chem. Soc. 133 (2011) 6158-161.
-
[13]
[13] E.N.G. Marsh, M.W. Waugh, Aldehyde decarbonylases: enigmatic enzymes of hydrocarbon biosynthesis, ACS Catal. 3 (2013) 2515-521.
-
[14]
[14] C. Andre, S.W. Kim, X.-H. Yu, et al., Fusing catalase to an alkane-producing enzyme maintains enzymatic activity by converting the inhibitory byproduct H2O2 to the cosubstrate O2, Proc. Natl. Acad. Sci. U. S. A. 110 (2013) 3191-196.
-
[15]
[15] F. Lin, D. Das, X.N. Lin, et al., Aldehyde-forming fatty acyl-CoA reductase from cyanobacteria: expression, purification and characterization of the recombinant enzyme, FEBS J. 280 (2013) 4773-781.
-
[16]
[16] A. He, T. Li, L. Daniels, et al., Nocardia sp. carboxylic acid reductase: cloning, expression, and characterization of a new aldehyde oxidoreductase family, Appl. Environ. Microb. 70 (2004) 1874-881.
-
[17]
[17] P. Venkitasubramanian, L. Daniels, J.P.N. Rosazza, Reduction of carboxylic acids by Nocardia aldehyde oxidoreductase requires a phosphopantetheinylated enzyme, J. Biol. Chem. 282 (2007) 478-85.
-
[18]
[18] Y. Liu, C. Wang, J. Yan, et al., Hydrogen peroxide-independent production of alphaalkenes by OleTJE p450 fatty acid decarboxylase, Biotechnol. Biofuels 7 (2014) 28.
-
[19]
[19] J. Belcher, K.J. Mclean, S. Matthews, et al., Structure and biochemical properties of the alkene producing cytochrome p450 OleTJE (cyp152l1) from the Jeotgalicoccus sp. 8456 bacterium, J. Biol. Chem. 289 (2014) 6535-550.
-
[20]
[20] J.G. Mccarthy, E.B. Eisman, S. Kulkarni, et al., Structural basis of functional group activation by sulfotransferases in complex metabolic pathways, ACS Chem. Biol. 7 (2012) 1994-003.
-
[21]
[21] D.J. Sukovich, J.L. Seffernick, J.E. Richman, et al., Widespread head-to-head hydrocarbon biosynthesis in bacteria and role of olea, Appl. Environ. Microbiol. 76 (2010) 3850-862.
-
[22]
[22] B.G. Harvey, M.E. Wright, R.L. Quintana, High-density renewable fuels based on the selective dimerization of pinenes, Energy Fuels 24 (2009) 267-73.
-
[23]
[23] G. Bokinsky, P.P. Peralta-Yahya, A. George, et al., Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli, Proc. Natl. Acad. Sci. U. S. A. 108 (2011) 19949-9954.
-
[24]
[24] J. Yang, Q. Nie, M. Ren, et al., Metabolic engineering of Escherichia coli for the biosynthesis of alpha-pinene, Biotechnol. Biofuels 6 (2013) 60.
-
[25]
[25] S. Sarria, B. Wong, H.G. Martn, et al., Microbial synthesis of pinene, ACS Synth. Biol. 3 (2014) 466-75.
-
[26]
[26] J. Alonso-Gutierrez, R. Chan, T.S. Batth, et al., Metabolic engineering of Escherichia coli for limonene and perillyl alcohol production, Metab. Eng. 19 (2013) 33-1.
-
[27]
[27] P.P. Peralta-Yahya, M. Ouellet, R. Chan, et al., Identification and microbial production of a terpene-based advanced biofuel, Nat. Commun. 2 (2011) 483.
-
[28]
[28] N. Renninger, D. Mcphee, Fuel compositions comprising farnesane and farnesane derivatives and method of making and using same, Patent US7846222 B2.
-
[29]
[29] J. Bohlmann, C.L. Steele, R. Croteau, Monoterpene synthases from Grand fir (Abies grandis): cDNA isolation, characterization, and functional expression of myrcene synthase, ( )-(4s)-limonene synthase, and ( )-(1s, 5s)-pinene synthase, J. Biol. Chem. 272 (1997) 21784-1792.
-
[30]
[30] D.B. Little, R.B. Croteau, Alteration of product formation by directed mutagenesis and truncation of the multiple-product sesquiterpene synthases d-selinene synthase and g-humulene synthase, Arch. Biochem. Biophys. 402 (2002) 120-35.
-
[31]
[31] T.J. Savage, M.W. Hatch, R. Croteau, Monoterpene synthases of pinus contorta and related conifers.Anewclass of terpenoidcyclase, J.Biol.Chem. 269(1994) 4012-020.
-
[32]
[32] C.A. Lesburg, G. Zhai, D.E. Cane, et al., Crystal structure of pentalenene synthase: mechanistic insights on terpenoid cyclization reactions in biology, Science 277 (1997) 1820-824.
-
[33]
[33] C.M. Starks, K. Back, J. Chappell, et al., Structural basis for cyclic terpene biosynthesis by tobacco 5-epi-aristolochene synthase, Science 277 (1997) 1815-820.
-
[34]
[34] J.M. Caruthers, I. Kang, M.J. Rynkiewicz, et al., Crystal structure determination of aristolochene synthase from the blue cheese mold, Penicillium roqueforti, J. Biol. Chem. 275 (2000) 25533-5539.
-
[35]
[35] M.J. Rynkiewicz, D.E. Cane, D.W. Christianson, Structure of trichodiene synthase from fusarium sporotrichioides provides mechanistic inferences on the terpene cyclization cascade, Proc. Natl. Acad. Sci. U. S. A. 98 (2001) 13543-3548.
-
[36]
[36] C.L. Steele, J. Crock, J. Bohlmann, et al., Sesquiterpene synthases from Grand fir (Abies grandis): comparison of constitutive and wound-induced activities, and cdna isolation, characterization, and bacterial expression of d-selinene synthase and g-humulene synthase, J. Biol. Chem. 273 (1998) 2078-089.
-
[37]
[37] Y. Yoshikuni, T.E. Ferrin, J.D. Keasling, Designed divergent evolution of enzyme function, Nature 440 (2006) 1078-082.
-
[1]
-
-
-
[1]
Fenglin Jiang , Anan Liu , Qian Wei , Youcai Hu . Editing function of type Ⅱ thioesterases in the biosynthesis of fungal polyketides. Chinese Chemical Letters, 2024, 35(10): 109504-. doi: 10.1016/j.cclet.2024.109504
-
[2]
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
-
[3]
Yanwei Duan , Qing Yang . Molecular targets and their application examples for interrupting chitin biosynthesis. Chinese Chemical Letters, 2025, 36(4): 109905-. doi: 10.1016/j.cclet.2024.109905
-
[4]
Jing Guo , Zhi-Guo Lu , Rui-Chen Zhao , Bao-Ku Li , Xin Zhang . Nucleic acid therapy for metabolic-related diseases. Chinese Chemical Letters, 2025, 36(3): 109875-. doi: 10.1016/j.cclet.2024.109875
-
[5]
Kunya Wang , Bingyu Liu , Daojiang Yan , Jian Bai , Haibo Yu , Youcai Hu . Full biosynthetic pathway of pyrrolobenzoxazines. Chinese Chemical Letters, 2025, 36(1): 109811-. doi: 10.1016/j.cclet.2024.109811
-
[6]
Jindian Duan , Xiaojuan Ding , Pui Ying Choy , Binyan Xu , Luchao Li , Hong Qin , Zheng Fang , Fuk Yee Kwong , Kai Guo . Oxidative spirolactonisation for modular access of γ-spirolactones via a radical tandem annulation pathway. Chinese Chemical Letters, 2024, 35(10): 109565-. doi: 10.1016/j.cclet.2024.109565
-
[7]
Kezuo Di , Jie Wei , Lijun Ding , Zhiying Shao , Junling Sha , Xilong Zhou , Huadong Heng , Xujing Feng , Kun Wang . A wearable sensor device based on screen-printed chip with biofuel cell-driven electrochromic display for noninvasive monitoring of glucose concentration. Chinese Chemical Letters, 2025, 36(2): 109911-. doi: 10.1016/j.cclet.2024.109911
-
[8]
Huaran Zhang , Yuting Huang , Yingjie Tang , Dekun Kong , Yi Zou . Genome mining of multi-substituted alkylresorcinols from a hybrid highly reducing- and type Ⅲ- polyketide pathway. Chinese Chemical Letters, 2024, 35(7): 108968-. doi: 10.1016/j.cclet.2023.108968
-
[9]
Ting Li , Xinxin Zheng , Lejing Qu , Yuanyuan Ou , Sai Qiao , Xue Zhao , Yajun Zhang , Xinfeng Zhao , Qian Li . A chromatographic method for pursuing potential GPCR ligands with the capacity to characterize their intrinsic activities of regulating downstream signaling pathway. Chinese Chemical Letters, 2024, 35(10): 109792-. doi: 10.1016/j.cclet.2024.109792
-
[10]
Yudi Cheng , Xiao Wang , Jiao Chen , Zihan Zhang , Jiadong Ou , Mengyao She , Fulin Chen , Jianli Li . A near-infrared fluorescent probe for visualizing transformation pathway of Cys/Hcy and H2S and its applications in living system. Chinese Chemical Letters, 2024, 35(5): 109156-. doi: 10.1016/j.cclet.2023.109156
-
[11]
Weixu Li , Yuexin Wang , Lin Li , Xinyi Huang , Mengdi Liu , Bo Gui , Xianjun Lang , Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299
-
[12]
Xiongbo Song , Jinwen Xiao , Juan Wu , Li Sun , Long Chen . Decellularized amniotic membrane promotes the anti-inflammatory response of macrophages via PI3K/AKT/HIF-1α pathway. Chinese Chemical Letters, 2025, 36(1): 109844-. doi: 10.1016/j.cclet.2024.109844
-
[13]
Pengyu Chen , Beibei Chen , Man He , Yuxi Zhou , Lei Lei , Jian Han , Bingsheng Zhou , Ligang Hu , Bin Hu . Nanoplastics and nano-ZnO facilitate Cd accumulation in zebrafish larvae via a distinct pathway: Revelation by LA-ICP-MS imaging. Chinese Chemical Letters, 2025, 36(2): 109908-. doi: 10.1016/j.cclet.2024.109908
-
[14]
Yuanyuan Zeng , Fang Liu , Jun Wang , Bianfei Shao , Tao He , Zhongzheng Xiang , Yan Wang , Shunyao Zhu , Tian Yang , Siting Yu , Changyang Gong , Lei Liu . Fisetin micelles precisely exhibit a radiosensitization effect by inhibiting PDGFRβ/STAT1/STAT3/Bcl-2 signaling pathway in tumor. Chinese Chemical Letters, 2025, 36(2): 109734-. doi: 10.1016/j.cclet.2024.109734
-
[15]
Xiangdong Lai , Tengfei Liu , Zengchao Guo , Yihan Wang , Jiang Xiao , Qingxiu Xia , Xiaohui Liu , Hui Jiang , Xuemei Wang . In situ formed fluorescent gold nanoclusters inhibit hair follicle regeneration in oxidative stress microenvironment via suppressing NFκB signal pathway. Chinese Chemical Letters, 2025, 36(2): 109762-. doi: 10.1016/j.cclet.2024.109762
-
[16]
Xinyue Lan , Junguang Liang , Churan Wen , Xiaolong Quan , Huimin Lin , Qinqin Xu , Peixian Chen , Guangyu Yao , Dan Zhou , Meng Yu . Photo-manipulated polyunsaturated fatty acid-doped liposomal hydrogel for flexible photoimmunotherapy. Chinese Chemical Letters, 2024, 35(4): 108616-. doi: 10.1016/j.cclet.2023.108616
-
[17]
Fukui Shen , Yuqing Zhang , Guoqing Luan , Kaixue Zhang , Zhenzhen Wang , Yunhao Luo , Yuanyuan Hou , Gang Bai . Revealing drug targets with multimodal bioorthogonal AMPD probes through visual metabolic labeling. Chinese Chemical Letters, 2024, 35(12): 109646-. doi: 10.1016/j.cclet.2024.109646
-
[18]
Shangqian Zhang , Jiaxuan Li , Xuan Hu , Zelong Chen , Junliang Dong , Chenhao Hu , Shuang Chao , Yinghua Lv , Yuxin Pei , Zhichao Pei . H2S and NIR light-driven nanomotors induce disulfidptosis for targeted anticancer therapy by enhancing disruption of tumor metabolic symbiosis. Chinese Chemical Letters, 2025, 36(1): 110314-. doi: 10.1016/j.cclet.2024.110314
-
[19]
Xianxu Chu , Lu Wang , Junru Li , Hui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105
-
[20]
Tianyi Hou , Yunhui Huang , Henghui Xu . Interfacial engineering for advanced solid-state Li-metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100313-100313. doi: 10.1016/j.cjsc.2024.100313
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(642)
- HTML views(9)