Citation: Feng-Ming Lin, E. Neil G. Marsh, Xiaoxia Nina Lin. Recent progress in hydrocarbon biofuel synthesis: Pathways and enzymes[J]. Chinese Chemical Letters, ;2015, 26(4): 431-434. doi: 10.1016/j.cclet.2015.03.018 shu

Recent progress in hydrocarbon biofuel synthesis: Pathways and enzymes

  • Corresponding author: Feng-Ming Lin, 
  • Received Date: 12 January 2015
    Available Online: 28 February 2015

  • Biofuels derived from hydrocarbon biosynthetic pathways have attracted increasing attention. Routes to hydrocarbon biofuels are emerging and mainly fall into two categories based on the metabolic pathways utilized: Fatty acid pathway-based alkanes/alkenes and isoprenoid biosynthetic pathway based terpenes. The primary focus of this review is on recent progress in the application of hydrocarbon biosynthetic pathways for hydrocarbon biofuel production, together with studies on enzymes, including efforts to engineering them for improved performance.
  • 加载中
    1. [1]

      [1] A. Bernard, J. Joubès, Arabidopsis cuticular waxes: advances in synthesis, export and regulation, Prog. Lipid. Res. 52 (2013) 110-29.

    2. [2]

      [2] T.M. Cheesbrough, P.E. Kolattukudy, Microsomal preparation from an animal tissue catalyzes release of carbon monoxide from a fatty aldehyde to generate an alkane, J. Biol. Chem. 263 (1988) 2738-743.

    3. [3]

      [3] R.W. Howard, G.J. Blomquist, Ecological, behavioral, and biochemical aspects of insect hydrocarbons, Annu. Rev. Entomol. 50 (2005) 371-93.

    4. [4]

      [4] M.W. Dennis, P.E. Kolattukudy, Alkane biosynthesis by decarbonylation of aldehyde catalyzed by a microsomal preparation from botryococcus braunii, Arch. Biochem. Biophys. 287 (1991) 268-75.

    5. [5]

      [5] A. Schirmer, M.A. Rude, X. Li, et al., Microbial biosynthesis of alkanes, Science 329 (2010) 559-62.

    6. [6]

      [6] M.K. Akhtar, N.J. Turner, P.R. Jones, Carboxylic acid reductase is a versatile enzyme for the conversion of fatty acids into fuels and chemical commodities, Proc. Natl. Acad. Sci. U. S. A. 110 (2013) 87-2.

    7. [7]

      [7] M.A. Rude, T.S. Baron, S. Brubaker, et al., Terminal olefin (1-alkene) biosynthesis by a novel p450 fatty acid decarboxylase from Jeotgalicoccus species, Appl. Environ. Microbiol. 77 (2011) 1718-727.

    8. [8]

      [8] D. Mendez-Perez, M.B. Begemann, B.F. Pfleger, Modular synthase-encoding gene involved in a-olefin biosynthesis in Synechococcus sp. Strain pcc 7002, Appl. Environ. Microbiol. 77 (2011) 4264-267.

    9. [9]

      [9] D. Mendez-Perez, S. Gunasekaran, V.J. Orler, et al., A translation-coupling DNA cassette for monitoring protein translation in Escherichia coli, Metab. Eng. 14 (2012) 298-05.

    10. [10]

      [10] H.R. Beller, E.-B. Goh, J.D. Keasling, Genes involved in long-chain alkene biosynthesis in Micrococcus luteus, Appl. Environ. Microbiol. 76 (2010) 1212-223.

    11. [11]

      [11] D. Das, B.E. Eser, J. Han, et al., Oxygen-independent decarbonylation of aldehydes by cyanobacterial aldehyde decarbonylase: a new reaction of diiron enzymes, Angew. Chem. Int. Ed. 50 (2011) 7148-152.

    12. [12]

      [12] N. Li, H. N鴕gaard, D.M. Warui, et al., Conversion of fatty aldehydes to alka(e)nes and formate by a cyanobacterial aldehyde decarbonylase: cryptic redox by an unusual dimetal oxygenase, J. Am. Chem. Soc. 133 (2011) 6158-161.

    13. [13]

      [13] E.N.G. Marsh, M.W. Waugh, Aldehyde decarbonylases: enigmatic enzymes of hydrocarbon biosynthesis, ACS Catal. 3 (2013) 2515-521.

    14. [14]

      [14] C. Andre, S.W. Kim, X.-H. Yu, et al., Fusing catalase to an alkane-producing enzyme maintains enzymatic activity by converting the inhibitory byproduct H2O2 to the cosubstrate O2, Proc. Natl. Acad. Sci. U. S. A. 110 (2013) 3191-196.

    15. [15]

      [15] F. Lin, D. Das, X.N. Lin, et al., Aldehyde-forming fatty acyl-CoA reductase from cyanobacteria: expression, purification and characterization of the recombinant enzyme, FEBS J. 280 (2013) 4773-781.

    16. [16]

      [16] A. He, T. Li, L. Daniels, et al., Nocardia sp. carboxylic acid reductase: cloning, expression, and characterization of a new aldehyde oxidoreductase family, Appl. Environ. Microb. 70 (2004) 1874-881.

    17. [17]

      [17] P. Venkitasubramanian, L. Daniels, J.P.N. Rosazza, Reduction of carboxylic acids by Nocardia aldehyde oxidoreductase requires a phosphopantetheinylated enzyme, J. Biol. Chem. 282 (2007) 478-85.

    18. [18]

      [18] Y. Liu, C. Wang, J. Yan, et al., Hydrogen peroxide-independent production of alphaalkenes by OleTJE p450 fatty acid decarboxylase, Biotechnol. Biofuels 7 (2014) 28.

    19. [19]

      [19] J. Belcher, K.J. Mclean, S. Matthews, et al., Structure and biochemical properties of the alkene producing cytochrome p450 OleTJE (cyp152l1) from the Jeotgalicoccus sp. 8456 bacterium, J. Biol. Chem. 289 (2014) 6535-550.

    20. [20]

      [20] J.G. Mccarthy, E.B. Eisman, S. Kulkarni, et al., Structural basis of functional group activation by sulfotransferases in complex metabolic pathways, ACS Chem. Biol. 7 (2012) 1994-003.

    21. [21]

      [21] D.J. Sukovich, J.L. Seffernick, J.E. Richman, et al., Widespread head-to-head hydrocarbon biosynthesis in bacteria and role of olea, Appl. Environ. Microbiol. 76 (2010) 3850-862.

    22. [22]

      [22] B.G. Harvey, M.E. Wright, R.L. Quintana, High-density renewable fuels based on the selective dimerization of pinenes, Energy Fuels 24 (2009) 267-73.

    23. [23]

      [23] G. Bokinsky, P.P. Peralta-Yahya, A. George, et al., Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli, Proc. Natl. Acad. Sci. U. S. A. 108 (2011) 19949-9954.

    24. [24]

      [24] J. Yang, Q. Nie, M. Ren, et al., Metabolic engineering of Escherichia coli for the biosynthesis of alpha-pinene, Biotechnol. Biofuels 6 (2013) 60.

    25. [25]

      [25] S. Sarria, B. Wong, H.G. Martn, et al., Microbial synthesis of pinene, ACS Synth. Biol. 3 (2014) 466-75.

    26. [26]

      [26] J. Alonso-Gutierrez, R. Chan, T.S. Batth, et al., Metabolic engineering of Escherichia coli for limonene and perillyl alcohol production, Metab. Eng. 19 (2013) 33-1.

    27. [27]

      [27] P.P. Peralta-Yahya, M. Ouellet, R. Chan, et al., Identification and microbial production of a terpene-based advanced biofuel, Nat. Commun. 2 (2011) 483.

    28. [28]

      [28] N. Renninger, D. Mcphee, Fuel compositions comprising farnesane and farnesane derivatives and method of making and using same, Patent US7846222 B2.

    29. [29]

      [29] J. Bohlmann, C.L. Steele, R. Croteau, Monoterpene synthases from Grand fir (Abies grandis): cDNA isolation, characterization, and functional expression of myrcene synthase, ( )-(4s)-limonene synthase, and ( )-(1s, 5s)-pinene synthase, J. Biol. Chem. 272 (1997) 21784-1792.

    30. [30]

      [30] D.B. Little, R.B. Croteau, Alteration of product formation by directed mutagenesis and truncation of the multiple-product sesquiterpene synthases d-selinene synthase and g-humulene synthase, Arch. Biochem. Biophys. 402 (2002) 120-35.

    31. [31]

      [31] T.J. Savage, M.W. Hatch, R. Croteau, Monoterpene synthases of pinus contorta and related conifers.Anewclass of terpenoidcyclase, J.Biol.Chem. 269(1994) 4012-020.

    32. [32]

      [32] C.A. Lesburg, G. Zhai, D.E. Cane, et al., Crystal structure of pentalenene synthase: mechanistic insights on terpenoid cyclization reactions in biology, Science 277 (1997) 1820-824.

    33. [33]

      [33] C.M. Starks, K. Back, J. Chappell, et al., Structural basis for cyclic terpene biosynthesis by tobacco 5-epi-aristolochene synthase, Science 277 (1997) 1815-820.

    34. [34]

      [34] J.M. Caruthers, I. Kang, M.J. Rynkiewicz, et al., Crystal structure determination of aristolochene synthase from the blue cheese mold, Penicillium roqueforti, J. Biol. Chem. 275 (2000) 25533-5539.

    35. [35]

      [35] M.J. Rynkiewicz, D.E. Cane, D.W. Christianson, Structure of trichodiene synthase from fusarium sporotrichioides provides mechanistic inferences on the terpene cyclization cascade, Proc. Natl. Acad. Sci. U. S. A. 98 (2001) 13543-3548.

    36. [36]

      [36] C.L. Steele, J. Crock, J. Bohlmann, et al., Sesquiterpene synthases from Grand fir (Abies grandis): comparison of constitutive and wound-induced activities, and cdna isolation, characterization, and bacterial expression of d-selinene synthase and g-humulene synthase, J. Biol. Chem. 273 (1998) 2078-089.

    37. [37]

      [37] Y. Yoshikuni, T.E. Ferrin, J.D. Keasling, Designed divergent evolution of enzyme function, Nature 440 (2006) 1078-082.

  • 加载中
    1. [1]

      Fenglin JiangAnan LiuQian WeiYoucai Hu . Editing function of type Ⅱ thioesterases in the biosynthesis of fungal polyketides. Chinese Chemical Letters, 2024, 35(10): 109504-. doi: 10.1016/j.cclet.2024.109504

    2. [2]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    3. [3]

      Yanwei DuanQing Yang . Molecular targets and their application examples for interrupting chitin biosynthesis. Chinese Chemical Letters, 2025, 36(4): 109905-. doi: 10.1016/j.cclet.2024.109905

    4. [4]

      Jing GuoZhi-Guo LuRui-Chen ZhaoBao-Ku LiXin Zhang . Nucleic acid therapy for metabolic-related diseases. Chinese Chemical Letters, 2025, 36(3): 109875-. doi: 10.1016/j.cclet.2024.109875

    5. [5]

      Kunya WangBingyu LiuDaojiang YanJian BaiHaibo YuYoucai Hu . Full biosynthetic pathway of pyrrolobenzoxazines. Chinese Chemical Letters, 2025, 36(1): 109811-. doi: 10.1016/j.cclet.2024.109811

    6. [6]

      Jindian DuanXiaojuan DingPui Ying ChoyBinyan XuLuchao LiHong QinZheng FangFuk Yee KwongKai Guo . Oxidative spirolactonisation for modular access of γ-spirolactones via a radical tandem annulation pathway. Chinese Chemical Letters, 2024, 35(10): 109565-. doi: 10.1016/j.cclet.2024.109565

    7. [7]

      Kezuo DiJie WeiLijun DingZhiying ShaoJunling ShaXilong ZhouHuadong HengXujing FengKun Wang . A wearable sensor device based on screen-printed chip with biofuel cell-driven electrochromic display for noninvasive monitoring of glucose concentration. Chinese Chemical Letters, 2025, 36(2): 109911-. doi: 10.1016/j.cclet.2024.109911

    8. [8]

      Huaran ZhangYuting HuangYingjie TangDekun KongYi Zou . Genome mining of multi-substituted alkylresorcinols from a hybrid highly reducing- and type Ⅲ- polyketide pathway. Chinese Chemical Letters, 2024, 35(7): 108968-. doi: 10.1016/j.cclet.2023.108968

    9. [9]

      Ting LiXinxin ZhengLejing QuYuanyuan OuSai QiaoXue ZhaoYajun ZhangXinfeng ZhaoQian Li . A chromatographic method for pursuing potential GPCR ligands with the capacity to characterize their intrinsic activities of regulating downstream signaling pathway. Chinese Chemical Letters, 2024, 35(10): 109792-. doi: 10.1016/j.cclet.2024.109792

    10. [10]

      Yudi ChengXiao WangJiao ChenZihan ZhangJiadong OuMengyao SheFulin ChenJianli Li . A near-infrared fluorescent probe for visualizing transformation pathway of Cys/Hcy and H2S and its applications in living system. Chinese Chemical Letters, 2024, 35(5): 109156-. doi: 10.1016/j.cclet.2023.109156

    11. [11]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    12. [12]

      Xiongbo SongJinwen XiaoJuan WuLi SunLong Chen . Decellularized amniotic membrane promotes the anti-inflammatory response of macrophages via PI3K/AKT/HIF-1α pathway. Chinese Chemical Letters, 2025, 36(1): 109844-. doi: 10.1016/j.cclet.2024.109844

    13. [13]

      Pengyu ChenBeibei ChenMan HeYuxi ZhouLei LeiJian HanBingsheng ZhouLigang HuBin Hu . Nanoplastics and nano-ZnO facilitate Cd accumulation in zebrafish larvae via a distinct pathway: Revelation by LA-ICP-MS imaging. Chinese Chemical Letters, 2025, 36(2): 109908-. doi: 10.1016/j.cclet.2024.109908

    14. [14]

      Yuanyuan ZengFang LiuJun WangBianfei ShaoTao HeZhongzheng XiangYan WangShunyao ZhuTian YangSiting YuChangyang GongLei Liu . Fisetin micelles precisely exhibit a radiosensitization effect by inhibiting PDGFRβ/STAT1/STAT3/Bcl-2 signaling pathway in tumor. Chinese Chemical Letters, 2025, 36(2): 109734-. doi: 10.1016/j.cclet.2024.109734

    15. [15]

      Xiangdong LaiTengfei LiuZengchao GuoYihan WangJiang XiaoQingxiu XiaXiaohui LiuHui JiangXuemei WangIn situ formed fluorescent gold nanoclusters inhibit hair follicle regeneration in oxidative stress microenvironment via suppressing NFκB signal pathway. Chinese Chemical Letters, 2025, 36(2): 109762-. doi: 10.1016/j.cclet.2024.109762

    16. [16]

      Xinyue LanJunguang LiangChuran WenXiaolong QuanHuimin LinQinqin XuPeixian ChenGuangyu YaoDan ZhouMeng Yu . Photo-manipulated polyunsaturated fatty acid-doped liposomal hydrogel for flexible photoimmunotherapy. Chinese Chemical Letters, 2024, 35(4): 108616-. doi: 10.1016/j.cclet.2023.108616

    17. [17]

      Fukui ShenYuqing ZhangGuoqing LuanKaixue ZhangZhenzhen WangYunhao LuoYuanyuan HouGang Bai . Revealing drug targets with multimodal bioorthogonal AMPD probes through visual metabolic labeling. Chinese Chemical Letters, 2024, 35(12): 109646-. doi: 10.1016/j.cclet.2024.109646

    18. [18]

      Shangqian ZhangJiaxuan LiXuan HuZelong ChenJunliang DongChenhao HuShuang ChaoYinghua LvYuxin PeiZhichao Pei . H2S and NIR light-driven nanomotors induce disulfidptosis for targeted anticancer therapy by enhancing disruption of tumor metabolic symbiosis. Chinese Chemical Letters, 2025, 36(1): 110314-. doi: 10.1016/j.cclet.2024.110314

    19. [19]

      Xianxu ChuLu WangJunru LiHui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105

    20. [20]

      Tianyi Hou Yunhui Huang Henghui Xu . Interfacial engineering for advanced solid-state Li-metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100313-100313. doi: 10.1016/j.cjsc.2024.100313

Metrics
  • PDF Downloads(0)
  • Abstract views(642)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return