Citation: Xiao-Na Ke, Casi M. Schienebeck, Chen-Chen Zhou, Xiu-Fang Xu, Wei-Ping Tang. Mechanism and reactivity of rhodium-catalyzed intermolecular [5 + 1] cycloaddition of 3-acyloxy-1,4-enyne (ACE) and CO: A computational study[J]. Chinese Chemical Letters, ;2015, 26(6): 730-734. doi: 10.1016/j.cclet.2015.03.016 shu

Mechanism and reactivity of rhodium-catalyzed intermolecular [5 + 1] cycloaddition of 3-acyloxy-1,4-enyne (ACE) and CO: A computational study

  • Corresponding author: Xiu-Fang Xu,  Wei-Ping Tang, 
  • Received Date: 15 December 2014
    Available Online: 22 January 2015

    Fund Project: We are grateful to Tianjin Natural Science Foundation (No. 14JCYBJC20100 X.X.) (No. 14JCYBJC20100 X.X.)

  • The first theoretical study on the mechanism of [RhCl(CO)2]2-catalyzed [5 + 1] cycloadditions of 3-acyloxy-1,4-enyne (ACE) and CO has been performed using density functional theory (DFT) calculations. The effect of ester on reactivity of this reaction has been investigated. The computational results have revealed that the preferred catalytic cycle involves the sequential steps of 1,2-acyloxy migration, CO insertion, reductive elimination to form ketene intermediate, 6π-electroncyclization, and aromatization to afford the resorcinol product. The 1,2-acyloxy migration is found to be the rate-determining step of the catalytic cycle. The electron-rich p-dimethylaminobenzoate substrate promotes 1,2-acyloxy migration and significantly increases the reactivity by stabilizing the positive charge building up in the oxocyclic transition state.
  • 加载中
    1. [1]

      [1] For selected examples, see: (a) M Lautens, W. Klute, W. Tam, Transition metal-mediated cycloaddition reactions, Chem. Rev. 96 (1996) 49-92;(b) H.W. Fruhauf, Metal-assisted cycloaddition reactions in organotransition metal chemistry, Chem. Rev. 97 (1997) 523-596; (c) B.M. Trost, M.J. Krische, Transition metal catalyzed cycloisomerizations, Synlett (1998) 1-16; (d) C. Aubert, O. Buisine, M. Malacria, The behavior of 1,n-enynes in the presence of transition metals, Chem. Rev. 102 (2002) 813-834; (e) P.A. Evans, Modern Rhodium-Catalyzed Organic Reactions, Wiley-VCH, Weinheim, 2005; (f) V. Michelet, P.Y. Toullec, J.P. Genet, Cycloisomerization of 1,n-enynes: challenging metal-catalyzed rearrangements and mechanistic insights, Angew. Chem. Int. Ed. 47 (2008) 4268-4315; (g) Z.X. Yu, Y. Wang, Y. Wang, Transition-metal-catalyzed cycloadditions for the synthesis of eight-membered carbocycles, Chem. Asian J. 5 (2010) 1072-1088; (h) P.A. Inglesby, P.A. Evans, Stereoselective transition metal-catalysed higherorder carbocyclisation reactions, Chem. Soc. Rev. 39 (2010) 2791-2805; (i) Z. Chen, X. Han, J.H. Liang, et al., Cycloaddition reactions of benzyne with olefins, Chin. Chem. Lett. 25 (2014) 1535-1539; (j) H. Mehrabi, M. Hatami-Pour, Facile, one-pot synthesis of new phenanthridine derivatives through 1,4-dipolar cycloaddition of phenanthridine, activated acetylenes, and aromatic aldehydes, Chin. Chem. Lett. 25 (2014) 1495-1498.

    2. [2]

      [2] (a) Y. Huang, X. Lu, Palladium catalyzed annulation reaction using a bifunctional allylic alkylating agent, Tetrahedron Lett. 29 (1988) 5663-5664; (b) X.C. He, B. Wang, B.D. Bai, Studies on asymmetric synthesis of huperzine A-1. Palladium-catalyzed asymmetric bicycloannulation of 5,6,7,8-tetrahydro-2-methoxy-6-oxo-5-quinolinecarboxylic esters, Tetrahedron Lett. 39 (1998) 411-414.

    3. [3]

      [3] (a) W. Carruthers, Cycloaddition Reactions in Organic Synthesis, Pergamon, Oxford, 1990; (b) P.A. Wender, T.E. Jenkins, S. Suzuki, Transition metal-catalyzed intramolecular[4 + 2] Diene-Allene cycloadditions: a convenient synthesis of angularly substituted ring systems with provision for catalyst-controlled chemo-and stereo-complementarity, J. Am. Chem. Soc. 117 (1995) 1843-1844; (c) D.J.R. O'Mahony, D.B. Belanger, T. Livinghouse, Substrate control of stereoselection in the rhodium(I) catalyzed intramolecular [4 + 2] cycloaddition reaction, Org. Biomol. Chem. 1 (2003) 2038-2040; (d) K. Aikawa, S. Akutagawa, K. Mikami, Asymmetric synergy between chiral dienes and diphosphines in cationic Rh(I)-catalyzed intramolecular [4 + 2] cycloaddition, J. Am. Chem. Soc. 128 (2006) 12648-12649; (e) A. Fürstner, C.C. Stimson, Two manifolds for metal-catalyzed intramolecular Diels-Alder reactions of unactivated alkynes, Angew. Chem. Int. Ed. 46 (2007) 8845-8849; (f) H. Kusama, Y. Karibe, Y. Onizawa, N. Iwasawa, Gold-catalyzed tandem cyclization of dienol silyl ethers for the preparation of bicyclo[4.3.0]nonane derivatives, Angew. Chem. Int. Ed. 49 (2010) 4269-4272; (g) S.M. Kim, J.H. Park, Y.K. Chung, Au(PPh3)OPOF2-catalyzed intramolecular[4 + 2] cycloaddition reaction of dienynes, Chem. Commun. 47 (2011) 6719-6721.

    4. [4]

      [4] (a) R. Aumann, Reactions of strained carbon-carbon bonds with transition metals. 7. Iron carbonyl complexes from vinylcyclopropane, J. Am. Chem. Soc. 96 (1974) 2631-2632; (b) D.F. Taber, K. Kanai, Q. Jiang, G. Bui, Enantiomerically pure cyclohexenones by Fe-mediated carbonylation of alkenyl cyclopropanes, J. Am. Chem. Soc. 122 (2000) 6807-6808; (c) D.F. Taber, P.V. Joshi, K. Kanai, 2,5-Dialkyl cyclohexenones by Fe(CO)5-mediated carbonylation of alkenyl cyclopropanes: functional group compatibility, J. Org. Chem. 69 (2004) 2268-2271; (d) T. Kurahashi, A. de Meijere, Cyclopropyl building blocks for organic synthesis, Part 120. [5 + 1] cocyclization of (cyclopropylmethylene)cyclopropanes and other vinyl-cyclopropanes with carbon monoxide catalyzed by octacarbonyldicobalt, Synlett (2005) 2619-2622.

    5. [5]

      [5] (a) P.A. Wender, G.G. Gamber, R.D. Hubbard, S.M. Pham, L. Zhang, Multicomponent cycloadditions: the four-component [5 + 1 + 2 + 1] cycloaddition of vinylcyclopropanes, alkynes, and CO, J. Am. Chem. Soc. 127 (2005) 2836-2837; (b) Z.K. Yao, J. Li, Z.X. Yu, Rh-catalyzed [7 + 1] cycloaddition of buta-1,3-dienylcyclopropanes and CO for the synthesis of cyclooctadienones, Org. Lett. 13 (2011) 134-137; (c) M. Lin, F. Li, L. Jiao, Z.X. Yu, Rh(I)-catalyzed formal [5 + 1]/[2 + 2 + 1] cycloaddition of 1-yne-vinylcyclopropanes and two CO units: one-step construction of multifunctional angular tricyclic 5/5/6 compounds, J. Am. Chem. Soc. 133 (2011) 1690-1693.

    6. [6]

      [6] (a) N. Iwasawa, Y. Owada, T. Matsuo, Octacarbonyldicobalt promoted transformation of 1-(1,2-propadienyl) cyclopropanols to 1,4-hydroquinones, Chem. Lett. (1995) 115-116; (b) Y. Owada, T. Matsuo, N. Iwasawa, Transformation of 1-(1,2-propadienyl) cyclopropanols into substituted hydroquinones employing octacarbonyldicobalt, Tetrahedron 53 (1997) 11069-11086; (c) M. Murakami, K. Itami, M. Ubukata, I. Tsuji, Y. Ito, Iridium-catalyzed [5 + 1] cycloaddition: allenylcyclopropane as a five-carbon assembling unit, J. Org. Chem. 63 (1998) 4-5; (d) D. Shu, X. Li, M. Zhang, P.J. Robichaux, W. Tang, Synthesis of highly functionalized cyclohexenone rings: rhodium-catalyzed 1,3-acyloxy migration and subsequent[5 + 1] cycloaddition, Angew. Chem. Int. Ed. 50 (2011) 1346-1349; (e) D. Shu, X. Li, M. Zhang, P.J. Robichaux, I.A. Guzei, W. Tang, Rhodium-catalyzed carbonylation of cyclopropyl substituted propargyl esters: a tandem 1,3-acyloxy migration [5 + 1] cycloaddition, J. Org. Chem. 77 (2012) 6463-6472.

    7. [7]

      [7] (a) N.A. Grabowski, R.P. Hughes, B.S. Jaynes, A.L. Rheingold, Stepwise transition metal promoted ring expansion reactions of vinylcyclopropenes to give cyclopentadienes and cyclohexa-2,4-dienones. The first example of a 1-metallacyclohexa-2,4-diene complex, {[Pt-CH2-CH≡C(Ph)-C(Ph)≡C(Ph)](PPh3)2}, J. Chem. Soc. Chem. Commun. (1986) 1694-1695; (b) S.H. Cho, L.S. Liebeskind, Practical organic synthesis with strained ring molecules. Rhodium catalyzed carbonylation of cyclopropenecarboxylate esters and cyclopropenyl ketones to a-pyrones and/of vinyl cyclopropenes to phenols, J. Org. Chem. 52 (1987) 2631-2634; (c) M.F. Semmelhack, S. Ho, M. Steigerwald, M.C. Lee, Metal carbonyl-promoted rearrangement of cyclopropenes to naphthols, J. Am. Chem. Soc. 109 (1987) 4397-4399; (d) M.F. Semmelhack, S. Ho, D. Cohen, et al., Metal-catalyzed cyclopropene rearrangements for benzannulation: evaluation of an anthraquinone synthesis pathway and reevaluation of the parallel approach via carbene-chromium complexes, J. Am. Chem. Soc. 116 (1994) 7108-7122.

    8. [8]

      [8] (a) C. Brancour, T. Fukuyama, Y. Ohta, et al., Synthesis of functionalized resorcinols by rhodium-catalyzed [5 + 1] cycloaddition reaction of 3-acyloxy-1,4-enynes with CO, Chem. Commun. 46 (2010) 5470-5472; (b) T. Fukuyama, Y. Ohta, C. Brancour, et al., Rh-catalyzed [5 + 1] and [4 + 1] cycloaddition reactions of 1,4-enyne esters with CO: a shortcut to functionalized resorcinols and cyclopentenones, Chem. Eur. J. 18 (2012) 7243-7247.

    9. [9]

      [9] A. Kamitani, N. Chatani, T. Morimoto, S. Murai, Carbonylative [5 + 1] cycloaddition of cyclopropyl imines catalyzed by ruthenium carbonyl complex, J. Org. Chem. 65 (2000) 9230-9233.

    10. [10]

      [10] (a) S. Kotha, E. Brahmachary, K. Lahiri, Transition metal catalyzed [2 + 2 + 2] cycloaddition and application in organic synthesis, Eur. J. Org. Chem. (2005) 4741-4767; (b) V. Gandon, C. Aubert, M. Malacria, Recent progress in cobalt-mediated[2 + 2 + 2] cycloaddition reactions, Chem. Commun. (2006) 2209-2217; (c) P.R. Chopade, J. Louie, [2 + 2 + 2] cycloaddition reactions catalyzed by transition metal complexes, Adv. Synth. Catal. 348 (2006) 2307-2327; (d) W. Wu, X.Y. Zhang, S.H. Kang, Rhodium-catalyzed selective [2 + 2 + 2] cyclizations of 1,6-diyneswithmonoynes leading to isoindolines and isobenzofurans, Chin. Chem. Lett. 21 (2010) 18-22.

    11. [11]

      [11] (a) Y. Koga, K. Narasaka, Rhodium catalyzed transformation of 4-pentynyl cyclopropanes to bicyclo[4.3.0]nonenones via cleavage of cyclopropane ring, Chem.Lett. (1999) 705-706; (b) S.I. Lee, J.H. Park, Y.K. Chung, S.G. Lee, Rhodium-catalyzed carbonylative[3 + 2 + 1] cycloaddition reaction: catalytic formation of bicyclic cyclohexenones from trienes and carbon monoxide, J. Am. Chem. Soc. 126 (2004) 2714-2715; (c) L. Jiao, M. Lin, L.G. Zhuo, Z.X. Yu, Rh(I)-catalyzed [(3 + 2) + 1] cycloaddition of 1-yne/ene-vinylcyclopropanes and CO: homologous Pauson-Khand reaction and total synthesis of (±)-α-agarofuran, Org. Lett. 12 (2010) 2528-2531; (d) C. Li, H. Zhang, J. Feng, Y. Zhang, J. Wang, Rh(I)-catalyzed carbonylative carbocyclization of tethered ene-and yne-cyclopropenes, Org. Lett. 12 (2010) 3082-3085.

    12. [12]

      [12] D.F. Taber, P. Guo, N. Guo, Intramolecular [1 + 4 + 1] cycloaddition: establishment of the method, J. Am. Chem. Soc. 132 (2010) 11179-11182.

    13. [13]

      [13] A. Kozubek, J.H.P. Tyman, Resorcinolic lipids, the natural non-isoprenoid phenolic amphiphiles and their biological activity, Chem. Rev. 99 (1999) 1-26.

    14. [14]

      [14] M. Himejima, I. Kubo, Antibacterial agents from the cashew anacardium occidentale (anacardiaceae) nut shell oil, J. Agric. Food Chem. 39 (1991) 418-421.

    15. [15]

      [15] X. Li, W. Song, W. Tang, Rhodium-catalyzed tandem annulation and (5 + 1) cycloaddition: 3-hydroxy-1,4-enyne as the 5-carbon component, J. Am. Chem. Soc. 135 (2013) 16797-16800.

    16. [16]

      [16] C.M. Schienebeck, W. Song, A.M. Smits, W. Tang, Rhodium-catalyzed intermolecular[5 + 1] and [5 + 2] cycloadditions using 1,4-enynes with an electron-donating ester on the 3-position, Synthesis (2015), http://dx.doi.org/10.1055/s-0034-1380160.

    17. [17]

      [17] X. Xu, P. Liu, X.Z. Shu, W. Tang, K.N. Houk, Rh-catalyzed (5 + 2) cycloadditions of 3-acyloxy-1,4-enynes and alkynes: computational study of mechanism, reactivity, and regioselectivity, J. Am. Chem. Soc. 135 (2013) 9271-9274.

    18. [18]

      [18] M.J. Frisch, G.W. Trucks, H.B. Schlegel, et al., Gaussian 09, Revision B.01, Gaussian, Inc., Wallingford, CT, 2010.

    19. [19]

      [19] C.Y. Legault, CYLview, 1.0b, Universitéde Sherbrooke, Sherbrooke, Québec, Canada, 2009, http://www.cylview.org.

    20. [20]

      [20] M.R. Wilson, A. Prock, W.P. Giering, p Effects involving Rh-PZ3 compounds. The quantitative analysis of ligand effects (QALE), Organometallics 21 (2002) 2758-2763.

    21. [21]

      [21] Computational studies involving the active catalyst Rh(CO)Cl which derives from dissociation of the dimer [RhCl(CO)2]2: (a) ZX. Yu, P.A. Wender, K.N. Houk, On the mechanism of [Rh(CO)2Cl]2-catalyzed intermolecular (5 + 2) reactions between vinylcyclopropanes and alkynes, J. Am. Chem. Soc. 126 (2004) 9154-9155; (b) Z.X. Yu, P.H.Y. Cheong, P. Liu, et al., Origins of differences in reactivities of alkenes, alkynes, and allenes in [Rh(CO)2Cl]2-catalyzed (5 + 2) cycloaddition reactions with vinylcyclopropanes, J. Am. Chem. Soc. 130 (2008) 2378-2379; (c) P. Liu, P.H.Y. Cheong, Z.X. Yu, P.A. Wender, K.N. Houk, Substituent effects, reactant preorganization, and ligand exchange control the reactivity in Rh(I)-catalyzed (5 + 2) cycloadditions between vinylcyclopropanes and alkynes, Angew. Chem. Int. Ed. 47 (2008) 3939-3941; (d) X. Xu, P. Liu, A. Lesser, et al., Ligand effects on rates and regioselectivities of Rh(I)-catalyzed (5 + 2) cycloadditions: a computational study of cyclooctadiene and dinaphthocyclooctatetraene as ligands, J. Am. Chem. Soc. 134 (2012) 11012-11025.

    22. [22]

      [22] C.M. Schienebeck, P.J. Robichaux, X. Li, L. Chen, W. Tang, Effect of ester on rhodium-catalyzed intermolecular [5 + 2] cycloaddition of 3-acyloxy-1,4-enynes and alkynes, Chem. Commun. 49 (2013) 2616-2618.

  • 加载中
    1. [1]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    2. [2]

      Tsegaye Tadesse Tsega Jiantao Zai Chin Wei Lai Xin-Hao Li Xuefeng Qian . Earth-abundant CuFeS2 nanocrystals@graphite felt electrode for high performance aqueous polysulfide/iodide redox flow batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100192-100192. doi: 10.1016/j.cjsc.2023.100192

    3. [3]

      Ting-Ting HuangJin-Fa ChenJuan LiuTai-Bao WeiHong YaoBingbing ShiQi Lin . A novel fused bi-macrocyclic host for sensitive detection of Cr2O72− based on enrichment effect. Chinese Chemical Letters, 2024, 35(7): 109281-. doi: 10.1016/j.cclet.2023.109281

    4. [4]

      Chunyan YangQiuyu RongFengyin ShiMenghan CaoGuie LiYanjun XinWen ZhangGuangshan Zhang . Rationally designed S-scheme heterojunction of BiOCl/g-C3N4 for photodegradation of sulfamerazine: Mechanism insights, degradation pathways and DFT calculation. Chinese Chemical Letters, 2024, 35(12): 109767-. doi: 10.1016/j.cclet.2024.109767

    5. [5]

      Run-Han LiTian-Yi DangWei GuanJiang LiuYa-Qian LanZhong-Min Su . Evolution exploration and structure prediction of Keggin-type group IVB metal-oxo clusters. Chinese Chemical Letters, 2024, 35(5): 108805-. doi: 10.1016/j.cclet.2023.108805

    6. [6]

      Chaozheng HeJia WangLing FuWei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037

    7. [7]

      Sanmei WangYong ZhouHengxin FangChunyang NieChang Q SunBiao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476

    8. [8]

      Sanmei WangDengxin YanWenhua ZhangLiangbing Wang . Graphene-supported isolated platinum atoms and platinum dimers for CO2 hydrogenation: Catalytic activity and selectivity variations. Chinese Chemical Letters, 2025, 36(4): 110611-. doi: 10.1016/j.cclet.2024.110611

    9. [9]

      Chen ChenJinzhou ZhengChaoqin ChuQinkun XiaoChaozheng HeXi Fu . An effective method for generating crystal structures based on the variational autoencoder and the diffusion model. Chinese Chemical Letters, 2025, 36(4): 109739-. doi: 10.1016/j.cclet.2024.109739

    10. [10]

      Yiwen XuChaozheng HeChenxu ZhaoLing Fu . Single-atom Ti doping on S-vacancy two-dimensional CrS2 as a catalyst for ammonia synthesis: A DFT study. Chinese Chemical Letters, 2025, 36(4): 109797-. doi: 10.1016/j.cclet.2024.109797

    11. [11]

      Gangsheng LiXiang YuanFu LiuZhihua LiuXujie WangYuanyuan LiuYanmin ChenTingting WangYanan YangPeicheng Zhang . Three-step synthesis of flavanostilbenes with a 2-cyclohepten-1-one core by Cu-mediated [5 + 2] cycloaddition/decarboxylation cascade. Chinese Chemical Letters, 2025, 36(2): 109880-. doi: 10.1016/j.cclet.2024.109880

    12. [12]

      Tong TongLezong ChenSiying WuZhong CaoYuanbin SongJun Wu . Establishment of a leucine-based poly(ester amide)s library with self-anticancer effect as nano-drug carrier for colorectal cancer treatment. Chinese Chemical Letters, 2024, 35(12): 109689-. doi: 10.1016/j.cclet.2024.109689

    13. [13]

      Dan-Ying XingXiao-Dan ZhaoChuan-Shu HeBo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436

    14. [14]

      Shaonan Liu Shuixing Dai Minghua Huang . The impact of ester groups on 1,8-naphthalimide electron transport material in organic solar cells. Chinese Journal of Structural Chemistry, 2024, 43(6): 100277-100277. doi: 10.1016/j.cjsc.2024.100277

    15. [15]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    16. [16]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    17. [17]

      Tao BanXi-Yang YuHai-Kuo TianZheng-Qing HuangChun-Ran Chang . One-step conversion of methane and formaldehyde to ethanol over SA-FLP dual-active-site catalysts: A DFT study. Chinese Chemical Letters, 2024, 35(4): 108549-. doi: 10.1016/j.cclet.2023.108549

    18. [18]

      Xiaohui FuYanping ZhangJuan LiaoZhen-Hua WangYong YouJian-Qiang ZhaoMingqiang ZhouWei-Cheng Yuan . Palladium-catalyzed enantioselective decarboxylation of vinyl cyclic carbamates: Generation of amide-based aza-1,3-dipoles and application to asymmetric 1,3-dipolar cycloaddition. Chinese Chemical Letters, 2024, 35(12): 109688-. doi: 10.1016/j.cclet.2024.109688

    19. [19]

      Yuanyuan ZengFang LiuJun WangBianfei ShaoTao HeZhongzheng XiangYan WangShunyao ZhuTian YangSiting YuChangyang GongLei Liu . Fisetin micelles precisely exhibit a radiosensitization effect by inhibiting PDGFRβ/STAT1/STAT3/Bcl-2 signaling pathway in tumor. Chinese Chemical Letters, 2025, 36(2): 109734-. doi: 10.1016/j.cclet.2024.109734

    20. [20]

      Mengxiang ZhuTao DingYunzhang LiYuanjie PengRuiping LiuQuan ZouLeilei YangShenglei SunPin ZhouGuosheng ShiDongting Yue . Graphene controlled solid-state growth of oxygen vacancies riched V2O5 catalyst to highly activate Fenton-like reaction. Chinese Chemical Letters, 2024, 35(12): 109833-. doi: 10.1016/j.cclet.2024.109833

Metrics
  • PDF Downloads(0)
  • Abstract views(645)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return