Citation: John T. King, Evan J. Arthur, Derek G. Osborne, Charles L. Brooks Ⅲ, Kevin J. Kubarych. Biomolecular hydration dynamics probed with 2D-IR spectroscopy: From dilute solution to a macromolecular crowd[J]. Chinese Chemical Letters, ;2015, 26(4): 435-438. doi: 10.1016/j.cclet.2015.03.005 shu

Biomolecular hydration dynamics probed with 2D-IR spectroscopy: From dilute solution to a macromolecular crowd

  • Corresponding author: Kevin J. Kubarych, 
  • Received Date: 26 November 2014
    Available Online: 9 January 2015

    Fund Project: This work has been supported by the National Science Foundation (No. CHE-0748501) (No. CHE-0748501) the National Institutes of Health (No. RR012255) (No. RR012255)

  • Although it is well known that water is essential for biological function, it has been a challenge to determine how water behaves near biomacromolecular interfaces, and what role water plays in influencing the dynamics of the biochemical machinery. By adopting a vibrational labeling strategy coupled with ultrafast two-dimensional infrared (2D-IR) spectroscopy, it has recently become possible to study hydration dynamics, site specifically at the surface of proteins and model membranes. We review our recent progress in measuring hydration dynamics in contexts ranging from small-molecule solutes to biomacromolecules in dilute, viscous, and crowded environments.
  • 加载中
    1. [1]

      [1] D. Chandler, Interfaces and the driving force of hydrophobic assembly, Nature 437 (2005) 640-647.

    2. [2]

      [2] D.G. Osborne, J.A. Dunbar, J.G. Lapping, A.M. White, K.J. Kubarych, Site-specific measurements of lipid membrane interfacial water dynamics with multidimensional infrared spectroscopy, J. Phys. Chem. B 117 (2013) 15407-15414.

    3. [3]

      [3] J.T. King, E.J. Arthur, C.L. Brooks, K.J. Kubarych, Site-specific hydration dynamics of globular proteins and the role of constrained water in solvent exchange with amphiphilic cosolvents, J. Phys. Chem. B 116 (2012) 5604-5611.

    4. [4]

      [4] J.T. King, K.J. Kubarych, Site-specific coupling of hydration water and protein flexibility studied in solution with ultrafast 2D-IR spectroscopy, J. Am. Chem. Soc. 134 (2012) 18705-18712.

    5. [5]

      [5] E.J. Arthur, J.T. King, K.J. Kubarych, C.L. Brooks, Heterogeneous preferential solvation of water and trifluoroethanol in homologous lysozymes, J. Phys. Chem. B 118 (2014) 8118-8127.

    6. [6]

      [6] J.T. King, E.J. Arthur, C.L. Brooks, K.J. Kubarych, Crowding induced collective hydration of biological macromolecules over extended distances, J. Am. Chem. Soc. 136 (2014) 188-194.

    7. [7]

      [7] P. Ball, Water as an active constituent in cell biology, Chem. Rev. 108 (2008) 74- 108.

    8. [8]

      [8] J.T. King, M.R. Ross, K.J. Kubarych, Water-assisted vibrational relaxation of a metal carbonyl complex studied with ultrafast 2D-IR, J. Phys. Chem. B 116 (2012) 3754- 3759.

    9. [9]

      [9] P. Hamm, M.T. Zanni, Concepts and Methods of 2D Infrared Spectroscopy, Cambridge University Press, New York, 2011.

    10. [10]

      [10] S. Roberts, J. Loparo, A. Tokmakoff, Characterization of spectral diffusion from two-dimensional line shapes, J. Chem. Phys. 125 (2006) 084502.

    11. [11]

      [11] D.G. Osborne, J.T. King, J.A. Dunbar, A.M. White, K.J. Kubarych, Ultrafast 2DIR probe of a host-guest inclusion complex: structural and dynamical constraints of nanoconfinement, J. Chem. Phys. 138 (2013) 144501.

    12. [12]

      [12] D.G. Osborne, K.J. Kubarych, Rapid and accurate measurement of the frequency- frequency correlation function, J. Phys. Chem. A 117 (2012) 5891-5898.

    13. [13]

      [13] J.T. King, M.R. Ross, K.J. Kubarych, Ultrafast alpha-like relaxation of a fragile glassforming liquid measured using two-dimensional infrared spectroscopy, Phys. Rev. Lett. 108 (2012) 157401.

    14. [14]

      [14] J.T. King, C.R. Baiz, K.J. Kubarych, Solvent-dependent spectral diffusion in a hydrogen bonded ‘‘Vibrational Aggregate'', J. Phys. Chem. A 114 (2010) 10590- 10604.

    15. [15]

      [15] J.F. Brookes, K.M. Slenkamp, M.S. Lynch, M. Khalil, Effect of solvent polarity on the vibrational dephasing dynamics of the nitrosyl stretch in an FeII complex revealed by 2D IR spectroscopy, J. Phys. Chem. A 117 (2013) 6234-6243.

    16. [16]

      [16] J. Qvist, E. Persson, C. Mattea, B. Halle, Time scales of water dynamics at biological interfaces: peptides, proteins and cells, Faraday Discuss. 141 (2009) 131-144.

    17. [17]

      [17] W.H. Qiu, Y.T. Kao, L.Y. Zhang, et al., Protein surface hydration mapped by sitespecific mutations, Proc. Natl. Acad. Sci. U. S. A. 103 (2006) 13979-13984.

    18. [18]

      [18] S.K. Pal, J. Peon, A.H. Zewail, Ultrafast surface hydration dynamics and expression of protein functionality: alpha-chymotrypsin, Proc. Natl. Acad. Sci. U. S. A. 99 (2002) 15297-15302.

    19. [19]

      [19] F. Sterpone, G. Stirnemann, D. Laage, Magnitude and molecular origin of water slowdown next to a protein, J. Am. Chem. Soc. 134 (2012) 4116-4119.

    20. [20]

      [20] A.C. Fogarty, D. Laage, Water dynamics in protein hydration shells: the molecular origins of the dynamical perturbation, J. Phys. Chem. B 118 (2014) 7715-7729.

    21. [21]

      [21] T. Knubovets, J.J. Osterhout, P.J. Connolly, A.M. Klibanov, Structure, thermostability, and conformational flexibility of hen egg-white lysozyme dissolved in glycerol, Proc. Natl. Acad. Sci. U. S. A. 96 (1999) 1262-1267.

    22. [22]

      [22] A.P. Minton, The influence of macromolecular crowding and macromolecular confinement on biochemical reactions in physiological media, J. Biol. Chem. 276 (2001) 10577-10580.

    23. [23]

      [23] M. Sarkar, J. Lu, G.J. Pielak, Protein crowder charge and protein stability, Biochemistry 53 (2014) 1601-1606.

    24. [24]

      [24] S. Ebbinghaus, S.J. Kim, M. Heyden, et al., An extended dynamical hydration shell around proteins, Proc. Natl. Acad. Sci. U. S. A. 104 (2007) 20749-20752.

    25. [25]

      [25] V.C. Nibali, M. Havenith, New insights into the role of water in biological function: studying solvated biomolecules using terahertz absorption spectroscopy in conjunction with molecular dynamics simulations, J. Am. Chem. Soc. 136 (2014) 12800-12807.

    26. [26]

      [26] C.R. Baiz, D. Schach, A. Tokmakoff, Ultrafast 2D IR microscopy, Opt. Express 22 (2014) 18724-18735.

    27. [27]

      [27] T. Ando, J. Skolnick, Crowding and hydrodynamic interactions likely dominate in vivo macromolecular motion, Proc. Natl. Acad. Sci. U. S. A. 107 (2010) 18457- 18462.

    28. [28]

      [28] A. Gershenson, L.M. Gierasch, Protein folding in the cell: challenges and progress, Curr. Opin. Struct. Biol. 21 (2011) 32-41.

  • 加载中
    1. [1]

      Jinqi YangXiaoxiang HuYuanyuan ZhangLingyu ZhaoChunlin YueYuan CaoYangyang ZhangZhenwen Zhao . Direct observation of natural products bound to protein based on UHPLC-ESI-MS combined with molecular dynamics simulation. Chinese Chemical Letters, 2025, 36(5): 110128-. doi: 10.1016/j.cclet.2024.110128

    2. [2]

      Chenghao GePeng WangPei YuanTai WuRongjun ZhaoRong HuangLin XieYong Hua . Tuning hot carrier transfer dynamics by perovskite surface modification. Chinese Chemical Letters, 2024, 35(10): 109352-. doi: 10.1016/j.cclet.2023.109352

    3. [3]

      Yan-Rui Zhao Jin Zhang Shi-Kun Yan Guang-Zhi Zhou Ya-Hui Wang Qi-Yue Xin Ji-Xiang Hu . Solvent-coordination directed control of electron transfer dynamics in photoactive complexes. Chinese Journal of Structural Chemistry, 2025, 44(12): 100753-100753. doi: 10.1016/j.cjsc.2025.100753

    4. [4]

      Yixin ZhangTing WangJixiang ZhangPengyu LuNeng ShiLiqiang ZhangWeiran ZhuNongyue He . Formation mechanism for stable system of nanoparticle/protein corona and phospholipid membrane. Chinese Chemical Letters, 2024, 35(4): 108619-. doi: 10.1016/j.cclet.2023.108619

    5. [5]

      Shiyu HouMaolin SunLiming CaoChaoming LiangJiaxin YangXinggui ZhouJinxing YeRuihua Cheng . Computational fluid dynamics simulation and experimental study on mixing performance of a three-dimensional circular cyclone-type microreactor. Chinese Chemical Letters, 2024, 35(4): 108761-. doi: 10.1016/j.cclet.2023.108761

    6. [6]

      Rongjun ZhaoTai WuYong HuaYude Wang . Improving performance of perovskite solar cells enabled by defects passivation and carrier transport dynamics regulation via organic additive. Chinese Chemical Letters, 2025, 36(2): 109587-. doi: 10.1016/j.cclet.2024.109587

    7. [7]

      Aoxuan SongQinglong QiaoNing XuYiyan RuanWenhao JiaXiang WangZhaochao Xu . Super-resolution imaging of cellular pseudopodia dynamics with a target-specific blinkogenic probe. Chinese Chemical Letters, 2025, 36(8): 110643-. doi: 10.1016/j.cclet.2024.110643

    8. [8]

      Takuya TanakaRikuto NodaYuki SawatariRiki IwaiBen Zhong TangGen-ichi Konishi . Viscosity responsiveness of excited-state dynamics in aggregated-induced emission luminogens. Chinese Chemical Letters, 2025, 36(12): 111495-. doi: 10.1016/j.cclet.2025.111495

    9. [9]

      Heng-Su Liu Xi-Ming Zhang Ge-Hao Liang Shisheng Zheng Jian-Feng Li . Investigation of water structure and proton transfer within confined graphene by ab initio molecule dynamics and multiscale data analysis. Chinese Journal of Structural Chemistry, 2025, 44(6): 100596-100596. doi: 10.1016/j.cjsc.2025.100596

    10. [10]

      Mengjia Luo Yi Qiu Zhengyang Zhou . Exploring temperature-driven phase dynamics of phosphate: The periodic to incommensurately modulated long-range ordered phase transition in CsCdPO4. Chinese Journal of Structural Chemistry, 2025, 44(1): 100446-100446. doi: 10.1016/j.cjsc.2024.100446

    11. [11]

      Zhimin SongZhe TangYu ZhangYanru ZhouXiaozheng DuanYan DuChong-Bo Ma . DNA-modulated Mo-Zn single-atom nanozymes: Insights from molecular dynamics simulations to smartphone-assisted biosensing. Chinese Chemical Letters, 2025, 36(10): 110680-. doi: 10.1016/j.cclet.2024.110680

    12. [12]

      Yan Zhao Zhenming Tian Qisen Jia Ting Yao Jiashu Li Yanan Wang Xuejing Cui Jing Liu Xin Chen Luhua Jiang . Crystal orientation dependent charge transfer dynamics and interfacial water configuration boosting photoelectrocatalytic water oxidation to H2O2. Chinese Journal of Structural Chemistry, 2025, 44(7): 100619-100619. doi: 10.1016/j.cjsc.2025.100619

    13. [13]

      Shiyang SunNing YangYaqiu MaoTing WeiPengli WeiTingting YangYixin ZhangJian YanChangkai JiaYi LiXu CaiZhiyuan ZhaoXuesong FengXiaomei ZhuangWenpeng ZhangJunhai XiaoPengyun LiZhibing ZhengSong Li . Rational design of VHL-recruiting KRASG12C proteolysis-targeting chimeras based on molecular dynamics simulation. Chinese Chemical Letters, 2026, 37(2): 110992-. doi: 10.1016/j.cclet.2025.110992

    14. [14]

      Manyu ZhuFei LiangLie WuZihao LiChen WangShule LiuXiue Jiang . Revealing the difference of Stark tuning rate between interface and bulk by surface-enhanced infrared absorption spectroscopy. Chinese Chemical Letters, 2025, 36(2): 109962-. doi: 10.1016/j.cclet.2024.109962

    15. [15]

      Boyuan HuJian ZhangYulin YangYayu DongJiaqi WangWei WangKaifeng LinDebin Xia . Dual-functional POM@IL complex modulate hole transport layer properties and interfacial charge dynamics for highly efficient and stable perovskite solar cells. Chinese Chemical Letters, 2024, 35(7): 108933-. doi: 10.1016/j.cclet.2023.108933

    16. [16]

      Shaoqiang WenLang ZhangZhan HuangMeng ChenYuzhi XuXing HuangZhou ZhangXiaoyong ZouZong DaiSi-Yang Liu . Aptamer&MOF-functionalized multichannel paper chip for point-of-care testing of small extracellular vesicle membrane protein profile. Chinese Chemical Letters, 2026, 37(2): 111333-. doi: 10.1016/j.cclet.2025.111333

    17. [17]

      Jianwen ZhaoShuai WangShanshan ZhaoLiwei ChenFangang MengXuelin Tian . A non-fluorinated liquid-like membrane with excellent anti-scaling performance for membrane distillation. Chinese Chemical Letters, 2025, 36(1): 109883-. doi: 10.1016/j.cclet.2024.109883

    18. [18]

      Tiantian LongHongmei LuoJingbo SunFengniu LuYi ChenDong XuZhiqin Yuan . Carbonization-engineered ultrafast chemical reaction on nanointerface. Chinese Chemical Letters, 2025, 36(3): 109728-. doi: 10.1016/j.cclet.2024.109728

    19. [19]

      Haixia WuKailu Guo . Sulfur reduction reaction mechanism elucidated with in situ Raman spectroscopy. Chinese Chemical Letters, 2025, 36(6): 110654-. doi: 10.1016/j.cclet.2024.110654

    20. [20]

      Zixuan ChenYafeng WuZhaoyan TianZhaohan WangWeiwei LiuSongqin Liu . A reproducible hybrid membrane for in situ analysis of cell secretions with a wide size range. Chinese Chemical Letters, 2025, 36(12): 110917-. doi: 10.1016/j.cclet.2025.110917

Metrics
  • PDF Downloads(0)
  • Abstract views(1110)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return