Citation:
Ai-Ling Li, Yan-Ping Ma, Dong Qiu. Formation of six-coordinated silicon in calcium phosphosilicate xerogels assisted by polyols at low temperature and pressure[J]. Chinese Chemical Letters,
;2015, 26(6): 768-772.
doi:
10.1016/j.cclet.2015.03.004
-
Silicon is usually found to be four-coordinated when neighbored with oxygen. Six-coordinated silicon is only seen in samples at very specific composition or made at high temperature/pressure. In this study, we managed to synthesize calciumphosphosilicate xerogels containing six-coordinated silicon with the help of polyols by sol-gel method, without the need of treatment at high temperature or high pressure. Both phosphorus precursors and polyols were found to be essential for the formation of six-coordinated silicon species; in the absence of either species, only normal four-coordinated silicon was observed under otherwise identical conditions. Samples containing six-coordinated silicon sites were found to release silicon species faster than those without six-coordinated silicon sites upon dissolved in water, suggesting that six-coordinated silicon species have higher reactivity toward hydrolysis.
-
Keywords:
- Phosphosilicate,
- Six-coordinated silicon,
- Polyols,
- MAS-NMR
-
-
-
[1]
[1] M. Nogami, K. Miyamura, Y. Abe, Fast protonic conductors of water-containing P2O5–ZrO2–SiO2 glasses, J. Electrochem. Soc. 144 (1997) 2175–2178.
-
[2]
[2] N.J. Clayden, S. Esposito, P. Pernice, A. Aronne, Solid state 1H NMR study, humidity sensitivity and protonic conduction of gel derived phosphosilicate glasses, J. Mater. Chem. 12 (2002) 3746–3753.
-
[3]
[3] E.A. Abou Neel, D.M. Pickup, S.P. Valappil, R.J. Newport, J.C. Knowles, Bioactive functional materials: a perspective on phosphate-based glasses, J. Mater. Chem. 19 (2009) 690–701.
-
[4]
[4] L.L. Hench, Bioceramics: from concept to clinic, J. Am. Ceram. Soc. 74 (1991) 1487– 1510.
-
[5]
[5] J. Ide, K. Ozutsumi, H. Kageyama, XAFS study of six-coordinated silicon in R2O–SiO2–P2O5 (R = Li, Na, K) glasses, J. Non-Cryst. Solids 353 (2007) 1966–1969.
-
[6]
[6] P. Melnikov, S.B. Santagnelli, F.J. dos Santos, et al., Phosphate functionalization of spongiolite surface, Mater. Chem. Phys. 82 (2003) 980–983.
-
[7]
[7] R. Dupree, D. Holland, M.G. Mortuza, J.A. Collins, M.W.G. Lockyer, Magic angle spinning NMR of alkali phosphor-alumino-silicate glasses, J. Non-Cryst. Solids 112 (1989) 111–119.
-
[8]
[8] N.J. Clayden, S. Esposito, P. Pernice, A.J. Aronne, Solid state 29Si and 31P NMR study of gel derived phosphosilicate glasses, J. Mater. Chem. 11 (2001) 936–943.
-
[9]
[9] I. EI-Sayed, Y. Hatanaka, S. Onozawa, M.J. Tanaka, Unusual locking of silicon chains in to all-transoid conformation by pentacoordinate silicon atoms, Am. Chem. Soc. 123 (2001) 3597–3598.
-
[10]
[10] I. El-Sayed, Y. Hatanaka, C. Muguruma, et al., Synthesis, X-ray structure, and electronic properties of oligosilanes containing pentacoordinate silicon moieties at internal positions, J. Am. Chem. Soc. 121 (1999) 5095–5096.
-
[11]
[11] C. Muguruma, N. Koga, Y. Hatanaka, et al., Theoretical study of ultraviolet absorption spectra of tetra- and pentacoordinate silicon compounds, J. Phys. Chem. A 104 (2000) 4928–4935.
-
[12]
[12] I. Kalikhman, O. Girshberg, L. Lameyer, D. Stalke, D. Kost, Tautomeric equilibrium between penta- and hexacoordinate silicon chelates. A chloride bridge between two pentacoordinate silicons, J. Am. Chem. Soc. 123 (2001) 4709–4716.
-
[13]
[13] M. Nakash, M. Goldvaser, Formation of hypervalent complexes of PhCCSiF3 with pyridine through intermolecular silicon nitrogen interaction, J. Am. Chem. Soc. 126 (2004) 3436–3437.
-
[14]
[14] I. Kalikhman, B. Gostevskii, O. Girshberg, S. Krivonos, D. Kost, Donor-stabilized silyl cations 4: N-isopropylidene hydrazides, novel bidentate ligands for pentaand hexacoordinate silicon chelates, Organometallics 21 (2002) 2551–2554.
-
[15]
[15] N. Kano, F. Komatsu, M. Yamamura, T. Kawashima, Reversible photoswitching of the coordination numbers of silicon in organosilicon compounds bearing a 2-(phenylazo) phenyl group, J. Am. Chem. Soc. 128 (2006) 7097–7109.
-
[16]
[16] J.B. Lambert, S.R. Singer, Self-assembled macrocycles with pentavalent silicon linkages, J. Organomet. Chem. 689 (2004) 2293–2302.
-
[17]
[17] G. Serghiou, R. Boehler, A. Chopelas, Reversible coordination changes in crystalline silicates at high pressure and ambient temperature, J. Phys. Condens. Matter 12 (2000) 849–857.
-
[18]
[18] M. Nogami, K. Miyamura, Y. Kawasaki, Y. Abe, Six-coordinated silicon in SrO– P2O5–SiO2 glasses, J. Non-Cryst. Solids 211 (1997) 208–213.
-
[19]
[19] T.L. Weeding, B.H.W.S.W. de Jong, S. Veeman, B.G. Aitken, Silicon coordination changes from 4-fold to 6-fold on devitrification of silicon phosphate glass, Nature 318 (1985) 352–353.
-
[20]
[20] E. Ohtani, F. Taulelle, C.A. Angell, Al3+ coordination changes in liquid aluminosilicates under pressure, Nature 314 (1985) 78–81.
-
[21]
[21] X. Xue, J.F. Stebbins, M. Kanzaki, R.G. Tronnes, Silicon coordination and speciation changes in a silicate liquid at high pressures, Science 245 (1989) 962–964.
-
[22]
[22] J.F. Stebbins, M. Kanzaki, Local structure and chemical shifts for six-coordinated silicon in high-pressure mantle phases, Science 251 (1991) 294–298.
-
[23]
[23] S.D. Kinrade, J.W.D. Nin, A.S. Schach, et al., Stable five- and six-coordinated silicate anions in aqueous solution, Science 285 (1999) 1542–1545.
-
[24]
[24] P. Hartmann, C. Jana, J. Vogel, C. Jager, P-31 MAS and 2D exchange NMR of crystalline silicon phosphates, Chem. Phys. Lett. 258 (1996) 107–112.
-
[25]
[25] D. Miyabe, M. Takahashi, Y. Tokuda, T. Yoko, T. Uchino, Structure and formation mechanism of six-fold coordinated silicon in phosphosilicate glasses, Phys. Rev. B 71 (2005) 172202.
-
[26]
[26] C. Coelho, F. Babonneau, T. Azaís, et al., Chemical bonding in silicophosphate gels: contribution of dipolar and J-derived solid state NMR techniques, J. Sol–Gel. Sci. Technol. 40 (2006) 181–189.
-
[27]
[27] S.P. Szu, L.C. Klein, M. Greenblatt, Effect of precursors on the structure of phosphosilicate gels-Si-29 and P-31 MAS NMR-study, J. Non-Cryst. Solids 143 (1992) 21–30.
-
[28]
[28] A. Li, D. Wang, J. Xiang, et al., Insights into new calcium phosphosilicate xerogels using an advanced characterization methodology, J. Non-Cryst. Solids 357 (2011) 3548–3555.
-
[29]
[29] R. Dupree, D. Holland, M.G. Mortuza, 6-Coordinated silicon in glasses, Nature 328 (1987) 416–417.
-
[30]
[30] S. Prabakar, K.J. Rao, C.N.R. Rao, A MAS NMR investigation of lead phosphosilicate glasses: the nature of the highly deshielded six-coordinated silicon, Mater. Res. Bull. 26 (1991) 285–294.
-
[31]
[31] M.G. Mortuza, M.R. Ahsan, J.A. Chudek, G. Hunter, First evidence for the coexistence of four-, five- and six-coordinated silicon in glasses prepared at ambient pressure, Chem. Commun. (2000) 2055–2056.
-
[32]
[32] V. Salih, K. Franks, M. James, G.W. Hastings, J.C. Knowles, Development of soluble glasses for biomedical use: Part II. The biological response of human osteoblast cell lines to phosphate-based soluble glasses, J. Mater. Sci.: Mater. Med. 11 (2000) 615-620.
-
[1]
-
-
-
[1]
Runze Liu , Yankai Bian , Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250
-
[2]
Xinzhi Ding , Chong Liu , Jing Niu , Nan Chen , Shutao Xu , Yingxu Wei , Zhongmin Liu . Solid-state NMR study of the stability of MOR framework aluminum. Chinese Journal of Structural Chemistry, 2024, 43(4): 100247-100247. doi: 10.1016/j.cjsc.2024.100247
-
[3]
Ling-Hao Zhao , Hai-Wei Yan , Jian-Shuang Jiang , Xu Zhang , Xiang Yuan , Ya-Nan Yang , Pei-Cheng Zhang . Effective assignment of positional isomers in dimeric shikonin and its analogs by 1H NMR spectroscopy. Chinese Chemical Letters, 2024, 35(5): 108863-. doi: 10.1016/j.cclet.2023.108863
-
[4]
Honglin Gao , Chunlin Yuan , Hongyu Chen , Aiyi Dong , Pan Gao , Guangjin Hou . Surface gallium hydride on Ga2O3 polymorphs: A comparative solid-state NMR study. Chinese Journal of Structural Chemistry, 2025, 44(4): 100561-100561. doi: 10.1016/j.cjsc.2025.100561
-
[5]
Chuyu Huang , Zhishan Liu , Linping Zhao , Zuxiao Chen , Rongrong Zheng , Xiaona Rao , Yuxuan Wei , Xin Chen , Shiying Li . Metal-coordinated oxidative stress amplifier to suppress tumor growth combined with M2 macrophage elimination. Chinese Chemical Letters, 2024, 35(12): 109696-. doi: 10.1016/j.cclet.2024.109696
-
[6]
Yanan Zhou , Li Sheng , Lanlan Chen , Wenhua Zhang , Jinlong Yang . Axial coordinated iron-nitrogen-carbon as efficient electrocatalysts for hydrogen evolution and oxygen redox reactions. Chinese Chemical Letters, 2025, 36(1): 109588-. doi: 10.1016/j.cclet.2024.109588
-
[7]
Lei Wang , Jun-Jie Wu , Chang-Cun Yan , Wan-Ying Yang , Zong-Lu Che , Xin-Yu Xia , Xue-Dong Wang , Liang-Sheng Liao . Near-infrared organic lasers with ultra-broad emission bands by simultaneously harnessing four-level and six-level systems. Chinese Chemical Letters, 2024, 35(8): 109365-. doi: 10.1016/j.cclet.2023.109365
-
[8]
Aimin Fu , Chunmei Chen , Qin Li , Nanjin Ding , Jiaxin Dong , Yu Chen , Mengsha Wei , Weiguang Sun , Hucheng Zhu , Yonghui Zhang . Niduenes A−F, six functionalized sesterterpenoids with a pentacyclic 5/5/5/5/6 skeleton from endophytic fungus Aspergillus nidulans. Chinese Chemical Letters, 2024, 35(9): 109100-. doi: 10.1016/j.cclet.2023.109100
-
[9]
Peng Zhou , Ziang Jiang , Yang Li , Peng Xiao , Feixiang Wu . Sulphur-template method for facile manufacturing porous silicon electrodes with enhanced electrochemical performance. Chinese Chemical Letters, 2024, 35(8): 109467-. doi: 10.1016/j.cclet.2023.109467
-
[10]
Yang Deng , Yitao Ouyang , Chao Han . Constriction-susceptible makes fast cycling of lithium metal in solid-state batteries: Silicon as an example. Chinese Journal of Structural Chemistry, 2024, 43(7): 100276-100276. doi: 10.1016/j.cjsc.2024.100276
-
[11]
Zeyu XU , Tongzhou LU , Haibo SHAO , Jianming WANG . Preparation and electrochemical lithium storage performance of porous silicon microsphere composite with metal modification and carbon coating. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1995-2008. doi: 10.11862/CJIC.20240164
-
[12]
Yang LIU , Lijun WANG , Hongyu WANG , Zhidong CHEN , Lin SUN . Surface and interface modification of porous silicon anodes in lithium-ion batteries by the introduction of heterogeneous atoms and hybrid encapsulation. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 773-785. doi: 10.11862/CJIC.20250015
-
[13]
Hongbin Liu , Putao Zhang . Effective approach to stabilize silicon anode: Controllable molecular construction of artificial solid electrolyte interphase. Chinese Journal of Structural Chemistry, 2025, 44(3): 100444-100444. doi: 10.1016/j.cjsc.2024.100444
-
[14]
Mei-Chen Liu , Qing-Song Liu , Yi-Zhou Quan , Jia-Ling Yu , Gang Wu , Xiu-Li Wang , Yu-Zhong Wang . Phosphorus-silicon-integrated electrolyte additive boosts cycling performance and safety of high-voltage lithium-ion batteries. Chinese Chemical Letters, 2024, 35(8): 109123-. doi: 10.1016/j.cclet.2023.109123
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(684)
- HTML views(1)