Citation:
Theodore E. Wiley, Brenden C. Arruda, Nicholas A. Miller, Michael Lenard, Roseanne J. Sension. Excited electronic states and internal conversion in cyanocobalamin[J]. Chinese Chemical Letters,
;2015, 26(4): 439-443.
doi:
10.1016/j.cclet.2015.03.003
-
Cyanocobalamin (CNCbl) is a paradigm system for the study of excited electronic states and biological cofactors including the B12 vitamers. The photophysics of CNCbl has been thoroughly investigated using both ultrafast spectroscopy and time dependent density functional theory (TD-DFT). Herewe review the spectroscopic and theoretical investigations of CNCbl with emphasis on the nature of S1, the lowest excited electronic state, and extend the spectroscopic measurements to include the ultraviolet region of the spectrum. Ultrafast transient absorption measurements in the visible αβ band region and in the midinfrared led to assignment of the S1 state to a ligand-to-metal charge transfer (LMCT) with lengthened axial bonds and a ~3 kcal/mol barrier for internal conversion to the ground state. The present measurements encompassing the γ band region of the spectrum provide further support for the assignment of the S1 state. The experiments are in good agreement with the results of TD-DFT calculations which confirm the expected lengthening of the axial bonds in S1 and account for the observed barrier for internal conversion back to the ground state.
-
-
-
[1]
[1] R. Banerjee, S.W. Ragsdale, The many faces of vitamin B12: catalysis by cobalamin- dependent enzymes, Ann. Rev. Biochem. 72 (2003) 209-247.
-
[2]
[2] R.G. Matthews, M. Koutmos, S. Datta, Cobalamin-dependent and cobamidedependent methyltransferases, Curr. Opin. Struct. Biol. 18 (2008) 658-666.
-
[3]
[3] M.L. Ludwig, R.G. Matthews, Structure-based perspectives on B12-dependent enzymes, Ann. Rev. Biochem. 66 (1997) 269-313.
-
[4]
[4] E.N.G. Marsh, Coenzyme B12 (cobalamin)-dependent enzymes, Essays Biochem. 34 (1999) 139-154.
-
[5]
[5] R. Banerjee, Chemistry and Biochemistry of B12, John Wiley and Sons, New York, 1999.
-
[6]
[6] S.C. Ke, K. Warncke, Interactions of substrate and product radicals with CoII in cobalamin and with the active site in ethanolamine deaminase, characterized by ESE-EPR and 14N ESEEM spectroscopies, J. Am. Chem. Soc. 121 (1999) 9922-9927.
-
[7]
[7] F. Mancia, N.H. Keep, A. Nakagawa, et al., How coenzyme B12 radicals are generated: the crystal structure of methylmalonyl-coenzyme A mutase at 2 a˚ resolution, Structure 4 (1996) 339-350.
-
[8]
[8] C.L. Drennan, S. Huang, J.T. Drummond, R.G. Matthews, M.L. Ludwig, How a protein binds B12: a 3.0 A X-ray structure of B12-binding domains of methionine synthase, Science 266 (1994) 1669-1674.
-
[9]
[9] J.A. Peng, K.C. Tang, K. McLoughlin, et al., Ultrafast excited-state dynamics and photolysis in base-off B-12 coenzymes and analogues: absence of the transnitrogenous ligand opens a channel for rapid nonradiative decay, J. Phys. Chem. B 114 (2010) 12398-12405.
-
[10]
[10] D. Padovani, T. Labunska, B.A. Palfey, D.P. Ballou, R. Banerjee, Adenosyltransferase tailors and delivers coenzyme B12, Nat. Chem. Biol. 4 (2008) 194-196.
-
[11]
[11] T.A. Shell, J.R. Shell, Z.L. Rodgers, D.S. Lawrence, Tunable visible and near-IR photoactivation of light-responsive compounds by using fluorophores as lightcapturing antennas, Angew. Chem. Int. Ed. 53 (2014) 875-878.
-
[12]
[12] T.A. Shell, D.S. Lawrence, A new trick (hydroxyl radical generation) for an old vitamin (B12), J. Am. Chem. Soc. 133 (2011) 2148-2150.
-
[13]
[13] M. Ruetz, R. Salchner, K. Wurst, S. Fedosov, B. Kra¨ utler, Phenylethynylcobalamin: a light-stable and thermolysis-resistant organometallic vitamin B12 derivative prepared by radical synthesis, Angew. Chem. Int. Ed. 52 (2013) 11406-11409.
-
[14]
[14] E. Mutti, M. Ruetz, H. Birn, B. Krautler, E. Nexo, 4-ethylphenyl-cobalamin impairs tissue uptake of vitamin B-12 and causes vitamin B12 deficiency in mice, PLOS ONE 8 (2013) e75312.
-
[15]
[15] A. Stickrath, E.C. Carroll, X. Dai, et al., Solvent-dependent cage dynamics of small nonpolar radicals: lessons from the photodissociation and geminate recombination of alkylcobalamins, J. Phys. Chem. A 113 (2009) 8513-8522.
-
[16]
[16] D.A. Harris, A.B. Stickrath, E.C. Carroll, R.J. Sension, Influence of environment on the electronic structure of Cob(III) alamins: time-resolved absorption studies of the s1 state spectrum and dynamics, J. Am. Chem. Soc. 129 (2007) 7578-7585.
-
[17]
[17] J.J. Shiang, A.G. Cole, R.J. Sension, et al., Ultrafast excited-state dynamics in vitamin B12 and related Cob(III) alamins, J. Am. Chem. Soc. 128 (2006) 801-808.
-
[18]
[18] R.J. Sension, D.A. Harris, A. Stickrath, et al., Time-resolved measurements of the photolysis and recombination of adenosylcobalamin bound to glutamate mutase, J. Phys. Chem. B 109 (2005) 18146-18152.
-
[19]
[19] R.J. Sension, D.A. Harris, A.G. Cole, Time-resolved spectroscopic studies of B12 coenzymes: a comparison of the influence of solvent on the primary photolysis mechanism and geminate recombination of methyl-, ethyl-, n-propyl-, and 50- deoxyadenosylcobalamin, J. Phys. Chem. B 109 (2005) 21954-21962.
-
[20]
[20] R.J. Sension, A.G. Cole, A.D. Harris, et al., Photolysis and recombination of adenosylcobalamin bound to glutamate mutase, J. Am. Chem. Soc. 126 (2004) 1598-1599.
-
[21]
[21] A.G. Cole, L.M. Yoder, J.J. Shiang, et al., Time-resolved spectroscopic studies of B12 coenzymes: a comparison of the primary photolysis mechanism in methyl-, ethyl-, n-propyl-, and 50-deoxyadenosylcobalamin, J. Am. Chem. Soc. 124 (2002) 434-441.
-
[22]
[22] L.M. Yoder, A.G. Cole, L.A. Walker II, R.J. Sension, Time-resolved spectroscopic studies of B12 coenzymes: influence of solvent on the photolysis of adenosylcobalamin, J. Phys. Chem. B 105 (2001) 12180-12188.
-
[23]
[23] J.J. Shiang, L.A. Walker II., N.A. Anderson, A.G. Cole, R.J. Sension, Time-resolved spectroscopic studies of B12 coenzymes: the photolysis of methylcobalamin is wavelength dependent, J. Phys. Chem. B 103 (1999) 10532-10539.
-
[24]
[24] L.A. Walker II., J.J. Shiang, N.A. Anderson, S.H. Pullen, R.J. Sension, Time-resolved spectroscopic studies of B12 coenzymes: the photolysis and geminate recombination of adenosylcobalamin, J. Am. Chem. Soc. 120 (1998) 7286-7292.
-
[25]
[25] L.A. Walker II., J.T. Jarrett, N.A. Anderson, et al., Time-resolved spectroscopic studies of B12 coenzymes: the identification of a metastable Cob(III)alamin photoproduct in the photolysis of methylcobalamin, J. Am. Chem. Soc. 120 (1998) 3597-3603.
-
[26]
[26] A.R. Jones, H.J. Russell, G.M. Greetham, et al., Ultrafast infrared spectral fingerprints of vitamin B12 and related cobalamins, J. Phys. Chem. A 116 (2012) 5586-5594.
-
[27]
[27] N. Shafizadeh, L. Poisson, B. Soep, Ultrafast electronic relaxation of excited state vitamin B12 in the gas phase, Chem. Phys. 350 (2008) 2-6.
-
[28]
[28] K. Kornobis, N. Kumar, P. Lodowski, et al., Electronic structure of the S1 state in methylcobalamin: Insight from CASSCF/MC-XQDPT2, EOM-CCSD, and TD-DFT calculations, J. Comp. Chem. 34 (2013) 987-1004.
-
[29]
[29] P. Lodowski, M. Jaworska, T. Andruniow, B.D. Garabato, P.M. Kozlowski, Mechanism of Co-C bond photolysis in the base-on form of methylcobalamin, J. Phys. Chem. A 118 (2014) 11718-11734.
-
[30]
[30] H. Solheim, K. Kornobis, K. Ruud, P.M. Kozlowski, Electronically excited states of vitamin B12 and methylcobalamin: theoretical analysis of absorption, CD, and MCD data, J. Phys. Chem. B 115 (2011) 737-748.
-
[31]
[31] P. Lodowski, M. Jaworska, T. Andruniów, M. Kumar, P.M. Kozlowski, Photodissociation of Co-C bond in methyl- and ethylcobalamin: an insight from TD-DFT calculations, J. Phys. Chem. B 113 (2009) 6898-6909.
-
[32]
[32] T. Andruniów, M. Jaworska, P. Lodowski, et al., Time-dependent density functional theory study of cobalt corrinoids: electronically excited states of coenzyme B12, J. Chem. Phys. 131 (2009) 105105.
-
[33]
[33] T. Andruniów, M. Jaworska, P. Lodowski, et al., Time-dependent density functional theory study of cobalt corrinoids: electronically excited states of methylcobalamin, J. Chem. Phys. 129 (2008) 085101.
-
[34]
[34] M. Jaworska, P. Lodowski, T. Andruniów, P.M. Kozlowski, Photolysis of methylcobalamin: identification of the relevant excited states involved in Co-C bond scission, J. Phys. Chem. B 111 (2007) 2419-2422.
-
[35]
[35] P. Lodowski, M. Jaworska, T. Andruniów, B.D. Garabato, P.M. Kozlowski, Mechanism of the S1 excited state internal conversion in vitamin B12, Phys. Chem. Chem. Phys. 16 (2014) 18675-18679.
-
[36]
[36] M. Kumar, P.M. Kozlowski, Why hydroxocobalamin is photocatalytically active? Chem. Phys. Lett. 543 (2012) 133-136.
-
[37]
[37] P. Lodowski, M. Jaworska, K. Kornobis, T. Andruniów, P.M. Kozlowski, Electronic and structural properties of low-lying excited states of vitamin B12, J. Phys. Chem. B 115 (2011) 13304-13319.
-
[38]
[38] K. Kornobis, N. Kumar, B.M. Wong, et al., Electronically excited states of vitamin B12: benchmark calculations including time-dependent density functional theory and correlated ab initio methods, J. Phys. Chem. A 115 (2011) 1280-1292.
-
[39]
[39] M.S.A. Hamza, J.M. Pratt, The chemistry of vitamin B12. Part 29. Coordination of imidazoles and 1 2,4-triazole by aquacyanocobinamide, J. Chem. Soc. Dalton Trans. (1994) 1373-1376.
-
[1]
-
-
-
[1]
Xiao-Ya Yuan , Cong-Cong Wang , Bing Yu . Recent advances in FeCl3-photocatalyzed organic reactions via hydrogen-atom transfer. Chinese Chemical Letters, 2024, 35(9): 109517-. doi: 10.1016/j.cclet.2024.109517
-
[2]
Xu Huang , Kai-Yin Wu , Chao Su , Lei Yang , Bei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720
-
[3]
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
-
[4]
Hui Liu , Xiangyang Tang , Zhuang Cheng , Yin Hu , Yan Yan , Yangze Xu , Zihan Su , Futong Liu , Ping Lu . Constructing multifunctional deep-blue emitters with weak charge transfer excited state for high-performance non-doped blue OLEDs and single-emissive-layer hybrid white OLEDs. Chinese Chemical Letters, 2024, 35(10): 109809-. doi: 10.1016/j.cclet.2024.109809
-
[5]
Kexin Yin , Jingren Yang , Yanwei Li , Qian Li , Xing Xu . Metal-free diatomaceous carbon-based catalyst for ultrafast and anti-interference Fenton-like oxidation. Chinese Chemical Letters, 2024, 35(12): 109847-. doi: 10.1016/j.cclet.2024.109847
-
[6]
Haiming Wu , Gaya N. Andrew , Rajini Anumula , Zhixun Luo . Corrigendum to 'How ligand coordination and superatomic-states accommodate the structure and property of a metal cluster: Cu4 (dppy)4 Cl2 vs. Cu21 (dppy)10 with altered photoluminescence' [Chin. Chem. Lett. 35 (2024) 108340]. Chinese Chemical Letters, 2024, 35(12): 109912-. doi: 10.1016/j.cclet.2024.109912
-
[7]
Zixi Zou , Jingyuan Wang , Yian Sun , Qian Wang , Da-Hui Qu . Controlling molecular assembly on time scale: Time-dependent multicolor fluorescence for information encryption. Chinese Chemical Letters, 2024, 35(7): 108972-. doi: 10.1016/j.cclet.2023.108972
-
[8]
Tiantian Long , Hongmei Luo , Jingbo Sun , Fengniu Lu , Yi Chen , Dong Xu , Zhiqin Yuan . Carbonization-engineered ultrafast chemical reaction on nanointerface. Chinese Chemical Letters, 2025, 36(3): 109728-. doi: 10.1016/j.cclet.2024.109728
-
[9]
Huizhong Wu , Ruiheng Liang , Ge Song , Zhongzheng Hu , Xuyang Zhang , Minghua Zhou . Enhanced interfacial charge transfer on Bi metal@defective Bi2Sn2O7 quantum dots towards improved full-spectrum photocatalysis: A combined experimental and theoretical investigation. Chinese Chemical Letters, 2024, 35(6): 109131-. doi: 10.1016/j.cclet.2023.109131
-
[10]
Wenxuan Yang , Long Shang , Xiaomeng Liu , Sihan Zhang , Haixia Li , Zhenhua Yan , Jun Chen . Ultrafast synthesis of nanocrystalline spinel oxides by Joule-heating method. Chinese Chemical Letters, 2024, 35(11): 109501-. doi: 10.1016/j.cclet.2024.109501
-
[11]
Ling-Hao Zhao , Hai-Wei Yan , Jian-Shuang Jiang , Xu Zhang , Xiang Yuan , Ya-Nan Yang , Pei-Cheng Zhang . Effective assignment of positional isomers in dimeric shikonin and its analogs by 1H NMR spectroscopy. Chinese Chemical Letters, 2024, 35(5): 108863-. doi: 10.1016/j.cclet.2023.108863
-
[12]
Chengde Wang , Liping Huang , Shanshan Wang , Lihao Wu , Yi Wang , Jun Dong . A distinction of gliomas at cellular and tissue level by surface-enhanced Raman scattering spectroscopy. Chinese Chemical Letters, 2024, 35(5): 109383-. doi: 10.1016/j.cclet.2023.109383
-
[13]
Manyu Zhu , Fei Liang , Lie Wu , Zihao Li , Chen Wang , Shule Liu , Xiue Jiang . Revealing the difference of Stark tuning rate between interface and bulk by surface-enhanced infrared absorption spectroscopy. Chinese Chemical Letters, 2025, 36(2): 109962-. doi: 10.1016/j.cclet.2024.109962
-
[14]
Xinyu Hou , Xuelian Yu , Meng Liu , Hengxing Peng , Lijuan Wu , Libing Liao , Guocheng Lv . Ultrafast synthesis of Mo2N with highly dispersed Ru for efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2025, 36(4): 109845-. doi: 10.1016/j.cclet.2024.109845
-
[15]
Shu Lin , Kezhen Qi . Phase-dependent lithium-alloying reactions for lithium-metal batteries. Chinese Chemical Letters, 2024, 35(4): 109431-. doi: 10.1016/j.cclet.2023.109431
-
[16]
Yunfei Shen , Long Chen . Gradient imprinted Zn metal anodes assist dendrites-free at high current density/capacity. Chinese Journal of Structural Chemistry, 2024, 43(10): 100321-100321. doi: 10.1016/j.cjsc.2024.100321
-
[17]
Yihu Ke , Shuai Wang , Fei Jin , Guangbo Liu , Zhiliang Jin , Noritatsu Tsubaki . Charge transfer optimization: Role of Cu-graphdiyne/NiCoMoO4 S-scheme heterojunction and Ohmic junction. Chinese Journal of Structural Chemistry, 2024, 43(12): 100458-100458. doi: 10.1016/j.cjsc.2024.100458
-
[18]
Ruotong Wei , Aokun Liu , Jian Kuang , Zhiwen Wang , Lu Yu , Changlin Tian . Probing the dynamic properties in the LLPS process via site-directed spin labeling-electron paramagnetic resonance (SDSL-EPR) spectroscopy. Chinese Chemical Letters, 2025, 36(4): 110029-. doi: 10.1016/j.cclet.2024.110029
-
[19]
Ruofan Yin , Zhaoxin Guo , Rui Liu , Xian-Sen Tao . Ultrafast synthesis of Na3V2(PO4)3 cathode for high performance sodium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109643-. doi: 10.1016/j.cclet.2024.109643
-
[20]
Jieqiong Xu , Wenbin Chen , Shengkai Li , Qian Chen , Tao Wang , Yadong Shi , Shengyong Deng , Mingde Li , Peifa Wei , Zhuo Chen . Organic stoichiometric cocrystals with a subtle balance of charge-transfer degree and molecular stacking towards high-efficiency NIR photothermal conversion. Chinese Chemical Letters, 2024, 35(10): 109808-. doi: 10.1016/j.cclet.2024.109808
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(610)
- HTML views(3)