Citation: Li-Jia Yu, Wei Gai, Qian-Fan Yang, Jun-Feng Xiang, Hong-Xia Sun, Qian Li, Li-Xia Wang, Ai-Jiao Guan, Ya-Lin Tang. Recognizing parallel-stranded G-quadruplex by cyanine dye dimer based on dual-site binding mode[J]. Chinese Chemical Letters, ;2015, 26(6): 705-708. doi: 10.1016/j.cclet.2015.02.002 shu

Recognizing parallel-stranded G-quadruplex by cyanine dye dimer based on dual-site binding mode

  • Corresponding author: Qian-Fan Yang,  Ya-Lin Tang, 
  • Received Date: 23 October 2014
    Available Online: 9 February 2015

    Fund Project: This present study was supported by Major National Basic Research Projects (973, No. 2013CB733701) (973, No. 2013CB733701)

  • G-quadruplexes (G4s) play important roles in biological systems, such as telomere maintenance, replication, and transcription. Based on the DNA sequence, loop geometry, and the local environments, G4s can be classified into different conformations. It is important to detect different types of G4s to monitor the diseases related with G4s. Most ligands bind to G4s based on end-stacking modes, while rare ligands bind to G4s through groove binding modes. We have found that a cyanine dye DMSB interacts with parallel G4 by end-stacking and groove simultaneous binding mode. In this article, we found that DMSB could simply discriminate parallel G4s from other DNA motifs by using UV-vis spectrum. These results give some clues to develop high specificity G4 probes.
  • 加载中
    1. [1]

      [1] A. Siddiqui-Jain, C.L. Grand, D.J. Bearss, L.H. Hurley, Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription, Proc. Natl. Acad. Sci. U. S. A. 99 (2002) 11593-11598.

    2. [2]

      [2] J.T. Davis, G-quartets 40 years later: from 5'-GMP to molecular biology and supramolecular chemistry, Angew. Chem. Int. Ed. 43 (2004) 668-698.

    3. [3]

      [3] S. Burge, G.N. Parkinson, P. Hazel, A.K. Todd, S. Neidle, Quadruplex DNA: sequence, topology and structure, Nucleic Acids Res. 34 (2006) 5402-5415.

    4. [4]

      [4] J.R. Williamson, G-quartet structures in telomeric DNA, Annu. Rev. Biophys. Biomol. Struct. 23 (1994) 703-730.

    5. [5]

      [5] J.R. Williamson, M.K. Raghuraman, T.R. Cech, Monovalent cation-induced structure of telomeric DNA: the G-quartet model, Cell 59 (1989) 871-880.

    6. [6]

      [6] J.L. Huppert, S. Balasubramanian, G-quadruplexes in promoters throughout the human genome, Nucleic Acids Res. 35 (2007) 406-413.

    7. [7]

      [7] G.W. Collie, G.N. Parkinson, The application of DNA and RNA G-quadruplexes to therapeutic medicines, Chem. Soc. Rev. 40 (2011) 5867-5892.

    8. [8]

      [8] Q.F. Yang, J.F. Xiang, S. Yang, et al., Verification of specific G-quadruplex structure by using a novel cyanine dye supramolecular assembly: I. Recognizing mixed G-quadruplex in human telomeres, Chem. Commun. (2009) 1103-1105.

    9. [9]

      [9] Q.F. Yang, J.F. Xiang, S. Yang, et al., Verification of specific G-quadruplex structure by using a novel cyanine dye supramolecular assembly: II. The binding characterization with specific intramolecular G-quadruplex and the recognizing mechanism, Nucleic Acids Res. 38 (2010) 1022-1033.

    10. [10]

      [10] L.J. Yu, Q.F. Yang, J.F. Xiang, et al. Analyst (2015), http://dx.doi.org/10.1039/c4an01912a.

    11. [11]

      [11] Q.F. Yang, J.F. Xiang, S. Yang, et al., Verification of intramolecular hybrid/parallel G-quadruplex structure under physiological conditions using novel cyanine dye H-aggregates: both in solution and on Au film, Anal. Chem. 82 (2010) 9135-9137.

    12. [12]

      [12] B. Pagano, A. Virno, C.A.Mattia, et al., Targeting DNA quadruplexeswith distamycin A and its derivatives: an ITC and NMR study, Biochimie 90 (2008) 1224-1232.

    13. [13]

      [13] C. Rajput, R. Rutkaite, L. Swanson, I. Haq, J.A. Thomas, Dinuclear monointercalating RuII complexes that display high affinity binding to duplex and quadruplex DNA, Chemistry 12 (2006) 4611-4619.

    14. [14]

      [14] T. Wilson, M.P. Williamson, J.A. Thomas, Differentiating quadruplexes: binding preferences of a luminescent dinuclear ruthenium(II) complex with four-stranded DNA structures, Org. Biomol. Chem. 8 (2010) 2617-2621.

    15. [15]

      [15] Z. Li, J.H. Tan, J.H. He, et al., Disubstituted quinazoline derivatives as a new type of highly selective ligands for telomeric G-quadruplex DNA, Eur. J. Med. Chem. 47 (2012) 299-311.

    16. [16]

      [16] P.Z. Zhang, H.L. Yang, C.C. Li, et al., Synthesis of novel, azasugar-modified anthraquinone derivatives and their cytotoxicity, Chin. Chem. Lett. 25 (2014) 1057-1059.

    17. [17]

      [17] E.W. White, F. Tanious, M.A. Ismail, et al., Structure-specific recognition of quadruplex DNA by organic cations: influence of shape, substituents and charge, Biophys. Chem. 126 (2007) 140-153.

    18. [18]

      [18] S. Cosconati, L. Marinelli, R. Trotta, et al., Structural and conformational requisites in DNA quadruplex groove binding: another piece to the puzzle, J. Am. Chem. Soc. 132 (2010) 6425-6433.

    19. [19]

      [19] W. Gai, Q.F. Yang, J.F. Xiang, et al., A dual-site simultaneous binding mode in the interaction between parallel-stranded G-quadruplex [d(TGGGGT)]4 and cyanine dye 2,2'-diethyl-9-methyl-selenacarbocyanine bromide, Nucleic Acids Res. 41 (2013) 2709-2722.

    20. [20]

      [20] F.M. Hamer, The Chemistry of Heterocyclic Compounds, Interscience, New York, 1964.

    21. [21]

      [21] L.G.S. Brooker, F.L. White, Studies in the cyanine dye series: I. A new method of preparing certain carbocyanines, J. Am. Chem. Soc. 57 (1935) 547-551.

    22. [22]

      [22] A.H. Herz, Aggregation of sensitizing dyes in solution and their adsorption onto silver halides, Adv. Colloid Interface Sci. 8 (1977) 237-298.

    23. [23]

      [23] A.H. Herz, Dye-dye interactions of cyanines in solution and at AgBr surfaces, Photogr. Sci. Eng. 18 (1974) 323-335.

    24. [24]

      [24] W. West, S. Pearce, Dimeric state of cyanine dyes, J. Phys. Chem. 69 (1965) 1894-1903.

    25. [25]

      [25] E.G. Mcrae, M. Kasha, Enhancement of phosphorescence ability upon aggregation of dye molecules, J. Chem. Phys. 28 (1958) 721-722.

    26. [26]

      [26] A.K. Chibisov, H. Görner, Photophysics of aggregated 9-methylthiacarbocyanine bound to polyanions, Chem. Phys. Lett. 357 (2002) 434-439.

    27. [27]

      [27] J.T. McPhee, E. Scott, N.E. Levinger, A. Van Orden, Cy3 in AOT reverse micelles: I. Dimer formation revealed through steady-state and time-resolved spectroscopy, J. Phys. Chem. B 115 (2011) 9576-9584.

    28. [28]

      [28] G. Laughlan, A.I. Murchie, D.G. Norman, et al., The high-resolution crystal structure of a parallel-stranded guanine tetraplex, Science 265 (1994) 520-524.

    29. [29]

      [29] G.N. Parkinson, M.P.H. Lee, S. Neidle, Crystal structure of parallel quadruplexes from human telomeric DNA, Nature 417 (2002) 876-880.

    30. [30]

      [30] S. Neidle, S. Burge, G.N. Parkinson, P. Hazel, A.K. Todd, Quadruplex DNA: sequence, topology and structure, Nucleic Acids Res. 34 (2006) 5402-5415.

    31. [31]

      [31] J.W. Yan, W.J. Ye, S.B. Chen, et al., Development of a universal colorimetric indicator for G-quadruplex structures by the fusion of thiazole orange and isaindigotone skeleton, Anal. Chem. 84 (2012) 6288-6292.

  • 加载中
    1. [1]

      Tiancong ShiXi ChenXiao ZhouHongyi ZhangFuping HanLihan CaiWen SunJianjun DuJiangli FanXiaojun Peng . Azaindole-based asymmetric pentamethine cyanine dye for mitochondrial pH detection and near-infrared ratiometric fluorescence imaging of mitophagy. Chinese Chemical Letters, 2025, 36(6): 110408-. doi: 10.1016/j.cclet.2024.110408

    2. [2]

      Yuwan LuXiaodan ZhangYuming Huang . Dual-site Se/NC specific peroxidase-like nanozyme for highly sensitive methimazole detection. Chinese Chemical Letters, 2025, 36(4): 110129-. doi: 10.1016/j.cclet.2024.110129

    3. [3]

      Guangchang YangShenglong YangJinlian YuYishun XieChunlei TanFeiyan LaiQianqian JinHongqiang WangXiaohui Zhang . Regulating local chemical environment in O3-type layered sodium oxides by dual-site Mg2+/B3+ substitution achieves durable and high-rate cathode. Chinese Chemical Letters, 2024, 35(9): 109722-. doi: 10.1016/j.cclet.2024.109722

    4. [4]

      Tianze WangJunyi RenDongxiang ZhangHuan WangJianjun DuXin-Dong JiangGuiling Wang . Development of functional dye with redshifted absorption based on Knoevenagel condensation at 1-site in phenyl[b]-fused BODIPY. Chinese Chemical Letters, 2024, 35(6): 108862-. doi: 10.1016/j.cclet.2023.108862

    5. [5]

      Futao YiYing LiuYao ChenJiahao ZhuQuanguo HeChun YangDongge MaJun Liu . Dual S-Scheme g-C3N4/Ag3PO4/g-C3N5 photocatalysts for removal of tetracycline pollutants through enhanced molecular oxygen activation. Chinese Chemical Letters, 2025, 36(8): 110544-. doi: 10.1016/j.cclet.2024.110544

    6. [6]

      Qiong-Hui PengNing-Bo LiJia-Cheng HouCai-Jun HeYa-Xin YangChun-Lin ZhuangLi-Juan OuMei YuanWei-Min He . Nd@g-C3N4 dual-functional photosynthesis and antitumor activities of 3-fluoroalkylated quinoxalin-2(1H)-ones. Chinese Chemical Letters, 2025, 36(12): 111402-. doi: 10.1016/j.cclet.2025.111402

    7. [7]

      Hejie ZhengZhili WangGuizhen LuoCuicui DuXiaohua ZhangJinhua Chen . A novel PEC-EC dual-mode biosensing platform for dual target detection of miRNA-133a and cTnI. Chinese Chemical Letters, 2025, 36(4): 110131-. doi: 10.1016/j.cclet.2024.110131

    8. [8]

      Wenkai LiuYanxian HouWeijian LiuRan WangShan HeXiang XiaChengyuan LvHua GuQichao YaoQingze PanZehou SuDanhong ZhouWen SunJiangli FanXiaojun Peng . Se-substituted pentamethine cyanine for anticancer photodynamic therapy mediated using the hot band absorption process. Chinese Chemical Letters, 2024, 35(12): 109631-. doi: 10.1016/j.cclet.2024.109631

    9. [9]

      Xianghan ZhangYuan QinHuaicong ZhangYutian CaoHaixing ZhuYingdi TangZimeng MaZehua LiJialin ZhouQunyan DongPeng YangYuqiong XiaZhongliang Wang . An aggregation-independent and rotor-specific TPE-cyanine probe for in vivo near-infrared fluorescent imaging. Chinese Chemical Letters, 2025, 36(9): 110715-. doi: 10.1016/j.cclet.2024.110715

    10. [10]

      Xia LiuWenzhuo DongMengqian JiaDexiu ZhangJingyi NiuJiwei ShenChaozhan WangYinmao Wei . Two-site synergistic binding strategy for improving adsorption and separation performance of antibodies. Chinese Chemical Letters, 2025, 36(12): 110991-. doi: 10.1016/j.cclet.2025.110991

    11. [11]

      Xuying YuJiarong MiYulan HanCai SunMingsheng WangGuocong Guo . A stable radiochromic semiconductive viologen-based metal–organic framework for dual-mode direct X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109233-. doi: 10.1016/j.cclet.2023.109233

    12. [12]

      Qiuye WangYabing SunLiangxue LaiHaijing CuiYonglong YeMing YangWeihao ZhuBo YuanQuanliang MaoWenzhi RenAiguo Wu . MMP-9-responsive probe for fluorescence-magnetic resonance dual-mode imaging of hepatocellular carcinoma models with different metastatic capacities. Chinese Chemical Letters, 2025, 36(4): 110212-. doi: 10.1016/j.cclet.2024.110212

    13. [13]

      Zhili YangLiqun LiuXuebi RaoZeyu JinJialin SunYongkang ZhuShiming Zhang . Deprotonation effect doubles active site density in Fe-N4-C catalyst for oxygen reduction electrocatalysis. Chinese Chemical Letters, 2025, 36(11): 111440-. doi: 10.1016/j.cclet.2025.111440

    14. [14]

      Jiajun WangGuolin YiShengling GuoJianing WangShujuan LiKe XuWeiyi WangShulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050

    15. [15]

      Gengchen GuoTianyu ZhaoRuichang SunMingzhe SongHongyu LiuSen WangJingwen LiJingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198

    16. [16]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    17. [17]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416

    18. [18]

      Yanghanbin Zhang Dongxiao Wen Wei Sun Jiahe Peng Dezhong Yu Xin Li Yang Qu Jizhou Jiang . State-of-the-art evolution of g-C3N4-based photocatalytic applications: A critical review. Chinese Journal of Structural Chemistry, 2024, 43(12): 100469-100469. doi: 10.1016/j.cjsc.2024.100469

    19. [19]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    20. [20]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

Metrics
  • PDF Downloads(0)
  • Abstract views(1109)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return