Citation:
Yue Zhou, Hui Li, Ying-Wei Yang. Controlled drug delivery systems based on calixarenes[J]. Chinese Chemical Letters,
;2015, 26(7): 825-828.
doi:
10.1016/j.cclet.2015.01.038
-
In recent years, cancer has become the number two cause of death around the world, and scientists have exploited various treatment maps. Calixarenes, with diversified features, have been widely applied into drug delivery systems, which can respond to multi-stimuli and exhibit excellent performance. In this mini-review, we summarize the recent advances on controlled drug delivery systems based on calixarenes, in the form of inclusion complexes, amphiphilic self-assembly nanocarriers including micelles, hydrogels, vesicles and liposomes, and supramolecular nanovalves on mesoporous silica nanomaterials.
-
Keywords:
- Drug delivery systems,
- Calixarenes,
- Assembly,
- Nanocarriers
-
-
-
[1]
[1] Y.W. Yang, Towards biocompatible nanovalves based on mesoporous silica nanoparticles, Med. Chem. Commun. 2 (2011) 1033–1049.
-
[2]
[2] D.S. Guo, K. Wang, Y.X. Wang, Y. Liu, Cholinesterase-responsive supramolecular vesicle, J. Am. Chem. Soc. 134 (2012) 10244–10250.
-
[3]
[3] C. Coll, A. Bernardos, R. Martinez-Manez, F. Sancenon, Gated silica mesoporous supports for controlled release and signaling applications, Acc. Chem. Res. 46 (2013) 339–349.
-
[4]
[4] K. Wang, D.S. Guo, X. Wang, Y. Liu, Multistimuli responsive supramolecular vesicles based on the recognition of p-sulfonatocalixarene and its controllable release of doxorubicin, ACS Nano 5 (2011) 2880–2894.
-
[5]
[5] H. Li, L.L. Tan, P. Jia, et al., Near-infrared light-responsive supramolecular nanovalve based on mesoporous silica-coated gold nanorods, Chem. Sci. 5 (2014) 2804–2808.
-
[6]
[6] N.J. Wheate, G.M. Abbott, R.J. Tate, et al., Side-on binding of p-sulphonatocalix[4]- arene to the dinuclear platinum complex trans-[{PtCl(NH3)2}2μ-dpzm]2+ and its implications for anticancer drug delivery, J. Inorg. Biochem. 103 (2009) 448–454.
-
[7]
[7] G.S. Wang, H.Y. Zhang, F. Ding, Y. Liu, Preparation and characterization of inclusion complexes of topotecan with sulfonatocalixarene, J. Incl. Phenom. Macrocycl. Chem. 69 (2011) 85–89.
-
[8]
[8] J. Song, H. Li, J. Chao, et al., Spectroscopic studies on the inclusion interaction of psulfonatocalix[ 6]arene with vitamin B6, J. Incl. Phenom. Macrocycl. Chem. 72 (2012) 389–395.
-
[9]
[9] X. Wang, C. Luo, Z. Lv, F. Lu, Investigation of the inclusion behavior between psulfoniccalix[8]arene and norfloxacin by fluorescence spectroscopy, J. Lumin. 131 (2011) 1986–1990.
-
[10]
[10] D.S. Guo, J. Yang, Y. Liu, Specifically monitoring butyrylcholinesterase by supramolecular tandem assay, Chem. Eur. J. 19 (2013) 8755–8759.
-
[11]
[11] C. Tu, L. Zhu, P. Li, et al., Supramolecular polymeric micelles by the host–guest interaction of star-like calix[4]arene and chlorin e6 for photodynamic therapy, Chem. Commun. 47 (2011) 6063–6065.
-
[12]
[12] Z. Qin, D.S. Guo, X.N. Gao, Y. Liu, Supra-amphiphilic aggregates formed by psulfonatocalix[4]arenes and the antipsychotic drug chlorpromazine, Soft Matter 10 (2014) 2253–2263.
-
[13]
[13] J. Zhang, D.S. Guo, L.H. Wang, et al., Supramolecular binary hydrogels from calixarenes and amino acids and their entrapment-release of model dye molecules, Soft Matter 7 (2011) 1756–1762.
-
[14]
[14] Q. Duan, Y. Cao, Y. Li, et al., pH-Responsive supramolecular vesicles based on water-soluble pillar[6]arene and ferrocene derivative for drug delivery, J. Am. Chem. Soc. 135 (2013) 10542–10549.
-
[15]
[15] J. Gualbert, P. Shahgaldian, A.W. Coleman, Interactions of amphiphilic calix[4]- arene-based solid lipid nanoparticles with bovine serum albumin, Int. J. Pharm. 257 (2003) 69–73.
-
[16]
[16] S. Aleandri, A. Casnati, L. Fantuzzi, et al., Incorporation of a calixarene-based glucose functionalised bolaamphiphile into lipid bilayers for multivalent lectin recognition, Org. Biomol. Chem. 11 (2013) 4811–4817.
-
[17]
[17] Y. Chen, P. Xu, M. Wu, et al., Colloidal RBC-shaped, hydrophilic, and hollow mesoporous carbon nanocapsules for highly efficient biomedical engineering, Adv. Mater. 26 (2014) 4294–4301.
-
[18]
[18] C. Wang, Z. Li, D. Cao, et al., Stimulated release of size-selected cargos in succession from mesoporous silica nanoparticles, Angew. Chem. Int. Ed. 51 (2012) 5460–5465.
-
[19]
[19] Y.L. Sun, B.J. Yang, S.X.A. Zhang, Y.W. Yang, Cucurbit[7]uril pseudorotaxane-based photoresponsive supramolecular nanovalve, Chem. Eur. J. 18 (2012) 9212–9216.
-
[20]
[20] L. Callego-Yerga, M. Lomazzi, F. Sansone, et al., Glycoligand-targeted core–shell nanospheres with tunable drug release profiles from calixarene–cyclodextrin heterodimers, Chem. Commun. 50 (2014) 7440–7443.
-
[21]
[21] V. Bohmer, Calixarenes, macrocycles with (almost) unlimited possibilities, Angew. Chem. Int. Ed. 34 (1995) 713–745.
-
[22]
[22] D.S. Guo, Y. Liu, Supramolecular chemistry of p-sulfonatocalix[n]arenes and its biological applications, Acc. Chem. Res. 47 (2014) 1925–1934.
-
[23]
[23] Y.W. Yang, Y.L. Sun, N. Song, Switchable host–guest systems on surfaces, Acc. Chem. Res. 47 (2014) 1950–1960.
-
[24]
[24] Q. Li, D.S. Guo, H. Qian, Y. Liu, Complexation of p-sulfonatocalixarenes with local anaesthetics guests: binding structures, stabilities, and thermodynamic origins, Eur. J. Org. Chem. (2012) 3962–3971.
-
[25]
[25] X. Zhang, H. Zhao, X. Cao, et al., Hg2+ wettability and fluorescence dual-signal responsive switch based on a cysteine complex of piperidine-calix[4]arene, Org. Biomol. Chem. 11 (2013) 8262–8268.
-
[26]
[26] J.V. Assis, M.G. Teixeira, C.G.P. Soares, et al., Experimental and theoretical NMR determination of isoniazid and sodium p-sulfonatocalix[n]arenes inclusion complexes, Eur. J. Pharm. Sci. 47 (2012) 539–548.
-
[27]
[27] G.S. Wang, H.Y. Zhang, D. Li, et al., Characterisation and antiproliferative activity of irinotecan and sulphonatocalixarene inclusion complex, Supramol. Chem. 23 (2011) 441–446.
-
[28]
[28] Y. Xue, Y. Guan, A. Zheng, H. Xiao, Amphoteric calix[8]arene-based complex for pH-triggered drug delivery, Colloids Surf. B: Biointerfaces 101 (2013) 55–60.
-
[29]
[29] E. James, P.K. Eggers, A.R. Harvey, et al., Antioxidant phospholipid calix[4]arene mimics as micellular delivery systems, Org. Biomol. Chem. 11 (2013) 6108–6112.
-
[30]
[30] M. Ma, P. Xing, S. Li, et al., Advances of host-guest supramolecular vesicles and their properties in drug delivery, Prog. Chem. 26 (2014) 1317–1328.
-
[31]
[31] M. Lee, S.J. Lee, L.H. Jiang, Stimuli-responsive supramolecular nanocapsules from amphiphilic calixarene assembly, J. Am. Chem. Soc. 126 (2004) 12724–12725.
-
[32]
[32] K. Wang, D.S. Guo, Y. Liu, Temperature-controlled supramolecular vesicles modulated by p-sulfonatocalix[5]arene with pyrene, Chem. Eur. J. 16 (2010) 8006– 8011.
-
[33]
[33] K. Wang, D.S. Guo, M.Y. Zhao, Y. Liu, A supramolecular vesicle based on the complexation of p-sulfonatocalixarene with protamine and its trypsin-triggered controllable-release properties, Chem. Eur. J. (2014), http://dx.doi.org/10.1002/ chem.201303963.
-
[34]
[34] S. Ehrler, U. Pieles, A. Wirth-Heller, P. Shahgaldian, Surface modification of resorcinarene based self-assembled solid lipid nanoparticles for drug targeting, Chem. Commun. (2007) 2605–2607.
-
[35]
[35] E. Drakalska, D. Momekova, Y. Manolova, et al., Hybrid liposomal PEGylated calix[4]arene systems as drug delivery platforms for curcumin, Int. J. Pharm. 472 (2014) 165–174.
-
[36]
[36] J. Liu, W. Bu, L. Pan, J. Shi, NIR-triggered anticancer drug delivery by upconverting nanoparticles with integrated azobenzene-modified mesoporous silica, Angew. Chem. Int. Ed. 52 (2013) 4375–4379.
-
[37]
[37] Q.L. Li, Y. Sun, Y.L. Sun, et al., Mesoporous silica nanoparticles coated by layer-bylayer self-assembly using cucurbit[7]uril for in vitro and in vivo anticancer drug release, Chem. Mater. 26 (2014) 6418–6431.
-
[38]
[38] Y.L. Sun, Y. Zhou, Q.L. Li, Y.W. Yang, Enzyme-responsive supramolecular nanovalves crafted by mesoporous silica nanoparticles and choline-sulfonatocalix[4]- arene [2]pseudorotaxanes for controlled cargo release, Chem. Commun. 49 (2013) 9033–9035.
-
[39]
[39] Y. Zhou, L.L. Tan, Q.L. Li, et al., Acetylcholine-triggered cargo release from supramolecular nanovalves based on different macrocyclic receptors, Chem. Eur. J. 20 (2014) 2998–3004.
-
[40]
[40] H. Li, Y.W. Yang, Gold nanoparticles functionalized with supramolecular macrocycles, Chin. Chem. Lett. 24 (2013) 545–552.
-
[41]
[41] L. Wang, L.L. Li, H.L. Ma, H. Wang, Recent advances in biocompatible supramolecular assemblies for biomolecular detection and delivery, Chin. Chem. Lett. 24 (2013) 351–358.
-
[1]
-
-
-
[1]
Ningyue Xu , Jun Wang , Lei Liu , Changyang Gong . Injectable hydrogel-based drug delivery systems for enhancing the efficacy of radiation therapy: A review of recent advances. Chinese Chemical Letters, 2024, 35(8): 109225-. doi: 10.1016/j.cclet.2023.109225
-
[2]
Xin Li , Zhen Xu , Donglei Bu , Jinming Cai , Huamei Chen , Qi Chen , Ting Chen , Fang Cheng , Lifeng Chi , Wenjie Dong , Zhenchao Dong , Shixuan Du , Qitang Fan , Xing Fan , Qiang Fu , Song Gao , Jing Guo , Weijun Guo , Yang He , Shimin Hou , Ying Jiang , Huihui Kong , Baojun Li , Dengyuan Li , Jie Li , Qing Li , Ruoning Li , Shuying Li , Yuxuan Lin , Mengxi Liu , Peinian Liu , Yanyan Liu , Jingtao Lü , Chuanxu Ma , Haoyang Pan , JinLiang Pan , Minghu Pan , Xiaohui Qiu , Ziyong Shen , Shijing Tan , Bing Wang , Dong Wang , Li Wang , Lili Wang , Tao Wang , Xiang Wang , Xingyue Wang , Xueyan Wang , Yansong Wang , Yu Wang , Kai Wu , Wei Xu , Na Xue , Linghao Yan , Fan Yang , Zhiyong Yang , Chi Zhang , Xue Zhang , Yang Zhang , Yao Zhang , Xiong Zhou , Junfa Zhu , Yajie Zhang , Feixue Gao , Yongfeng Wang . Recent progress on surface chemistry Ⅰ: Assembly and reaction. Chinese Chemical Letters, 2024, 35(12): 110055-. doi: 10.1016/j.cclet.2024.110055
-
[3]
Nianqiang Jiang , Yiqiang Ou , Yanpeng Zhu , Dingyong Zhong , Jiaobing Wang . Assembly of fullerenes using a highly preorganized janusarene. Chinese Chemical Letters, 2025, 36(4): 110004-. doi: 10.1016/j.cclet.2024.110004
-
[4]
Zhu Shu , Xin Lei , Yeye Ai , Ke Shao , Jianliang Shen , Zhegang Huang , Yongguang Li . ATP-induced supramolecular assembly based on chromophoric organic molecules and metal complexes. Chinese Chemical Letters, 2024, 35(11): 109585-. doi: 10.1016/j.cclet.2024.109585
-
[5]
Xueyan Zhang , Jicong Chen , Songren Han , Shiyan Dong , Huan Zhang , Yuhong Man , Jie Yang , Ye Bi , Lesheng Teng . The size-switchable microspheres co-loaded with RANK siRNA and salmon calcitonin for osteoporosis therapy. Chinese Chemical Letters, 2024, 35(12): 109668-. doi: 10.1016/j.cclet.2024.109668
-
[6]
Han Wu , Yumei Wang , Zekai Ren , Hailin Cong , Youqing Shen , Bing Yu . The nanocarrier strategy for crossing the blood-brain barrier in glioma therapy. Chinese Chemical Letters, 2025, 36(4): 109996-. doi: 10.1016/j.cclet.2024.109996
-
[7]
Fengjie Liu , Fansu Meng , Zhenjiang Yang , Huan Wang , Yuehong Ren , Yu Cai , Xingwang Zhang . Exosome-biomimetic nanocarriers for oral drug delivery. Chinese Chemical Letters, 2024, 35(9): 109335-. doi: 10.1016/j.cclet.2023.109335
-
[8]
Linghui Zou , Meng Cheng , Kaili Hu , Jianfang Feng , Liangxing Tu . Vesicular drug delivery systems for oral absorption enhancement. Chinese Chemical Letters, 2024, 35(7): 109129-. doi: 10.1016/j.cclet.2023.109129
-
[9]
Wen Xiao , Fazhan Wang , Yangzhuo Gu , Xi He , Na Fan , Qian Zheng , Shugang Qin , Zhongshan He , Yuquan Wei , Xiangrong Song . PEG400-mediated nanocarriers improve the delivery and therapeutic efficiency of mRNA tumor vaccines. Chinese Chemical Letters, 2024, 35(5): 108755-. doi: 10.1016/j.cclet.2023.108755
-
[10]
Yujie Li , Ya-Nan Wang , Yin-Gen Luo , Hongcai Yang , Jinrui Ren , Xiao Li . Advances in synthetic biology-based drug delivery systems for disease treatment. Chinese Chemical Letters, 2024, 35(11): 109576-. doi: 10.1016/j.cclet.2024.109576
-
[11]
Shunliu Deng , Haifeng Su , Yaxian Zhu , Yuzhi Wang , Yuhua Weng , Zhaobin Chen , Shunü Peng , Yinyun Lü , Xinyi Hong , Yiru Wang , Xiaozhen Huang , Zhimin Lin , Lansun Zheng . Course Ideological and Political Design for Self-Building Experiments of Scientific Instruments: Taking the Construction, Debugging, and Application of Teaching Mass Spectrometer as an Example. University Chemistry, 2024, 39(2): 127-132. doi: 10.3866/PKU.DXHX202308002
-
[12]
Fengqiao Bi , Jun Wang , Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069
-
[13]
Jiechen Liu , Xiaoguang Li , Ruiyang Xia , Yuqi Wang , Fenghe Zhang , Yongzhi Pang , Qing Li . Efficient suppression of oral squamous cell carcinoma through spatial dimension conversion drug delivery systems-enabled immunomodulatory-photodynamic therapy. Chinese Chemical Letters, 2024, 35(12): 109619-. doi: 10.1016/j.cclet.2024.109619
-
[14]
Yutong Xiong , Ting Meng , Wendi Luo , Bin Tu , Shuai Wang , Qingdao Zeng . Molecular conformational effects on co-assembly systems of low-symmetric carboxylic acids investigated by scanning tunneling microscopy. Chinese Journal of Structural Chemistry, 2025, 44(2): 100511-100511. doi: 10.1016/j.cjsc.2025.100511
-
[15]
Ziqin Li , Kai Hao , Longwei Xiang , Huayu Tian . Cationic covalent organic framework nanocarriers integrating both efficient gene silencing and real-time gene detection. Chinese Chemical Letters, 2025, 36(4): 109943-. doi: 10.1016/j.cclet.2024.109943
-
[16]
Zhiwen Li , Jingjing Zhang , Gao Li . Dynamic assembly of chiral golden knots. Chinese Journal of Structural Chemistry, 2024, 43(7): 100300-100300. doi: 10.1016/j.cjsc.2024.100300
-
[17]
Zhilong Xie , Guohui Zhang , Ya Meng , Yefei Tong , Jian Deng , Honghui Li , Qingqing Ma , Shisong Han , Wenjun Ni . A natural nano-platform: Advances in drug delivery system with recombinant high-density lipoprotein. Chinese Chemical Letters, 2024, 35(11): 109584-. doi: 10.1016/j.cclet.2024.109584
-
[18]
Yi Cao , Xiaojiao Ge , Yuanyuan Wei , Lulu He , Aiguo Wu , Juan Li . Tumor microenvironment-activatable neuropeptide-drug conjugates enhanced tumor penetration and inhibition via multiple delivery pathways and calcium deposition. Chinese Chemical Letters, 2024, 35(4): 108672-. doi: 10.1016/j.cclet.2023.108672
-
[19]
Xingqun Pu , Rongrong Liu , Yuting Xie , Chenjing Yang , Jingyi Chen , Baoling Guo , Chun-Xia Zhao , Peng Zhao , Jian Ruan , Fangfu Ye , David A Weitz , Dong Chen . One-step preparation of biocompatible amphiphilic dimer nanoparticles with tunable particle morphology and surface property for interface stabilization and drug delivery. Chinese Chemical Letters, 2025, 36(3): 109820-. doi: 10.1016/j.cclet.2024.109820
-
[20]
Wenlong Li , Feishi Shan , Qingdong Bao , Qinghua Li , Hua Gao , Leyong Wang . Supramolecular assembly nanoparticle for trans-epithelial treatment of keratoconus. Chinese Chemical Letters, 2024, 35(10): 110060-. doi: 10.1016/j.cclet.2024.110060
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(713)
- HTML views(30)