Citation: Yue Zhou, Hui Li, Ying-Wei Yang. Controlled drug delivery systems based on calixarenes[J]. Chinese Chemical Letters, ;2015, 26(7): 825-828. doi: 10.1016/j.cclet.2015.01.038 shu

Controlled drug delivery systems based on calixarenes

  • Corresponding author: Ying-Wei Yang, 
  • Received Date: 8 January 2015
    Available Online: 24 January 2015

    Fund Project:

  • In recent years, cancer has become the number two cause of death around the world, and scientists have exploited various treatment maps. Calixarenes, with diversified features, have been widely applied into drug delivery systems, which can respond to multi-stimuli and exhibit excellent performance. In this mini-review, we summarize the recent advances on controlled drug delivery systems based on calixarenes, in the form of inclusion complexes, amphiphilic self-assembly nanocarriers including micelles, hydrogels, vesicles and liposomes, and supramolecular nanovalves on mesoporous silica nanomaterials.
  • 加载中
    1. [1]

      [1] Y.W. Yang, Towards biocompatible nanovalves based on mesoporous silica nanoparticles, Med. Chem. Commun. 2 (2011) 1033–1049.

    2. [2]

      [2] D.S. Guo, K. Wang, Y.X. Wang, Y. Liu, Cholinesterase-responsive supramolecular vesicle, J. Am. Chem. Soc. 134 (2012) 10244–10250.

    3. [3]

      [3] C. Coll, A. Bernardos, R. Martinez-Manez, F. Sancenon, Gated silica mesoporous supports for controlled release and signaling applications, Acc. Chem. Res. 46 (2013) 339–349.

    4. [4]

      [4] K. Wang, D.S. Guo, X. Wang, Y. Liu, Multistimuli responsive supramolecular vesicles based on the recognition of p-sulfonatocalixarene and its controllable release of doxorubicin, ACS Nano 5 (2011) 2880–2894.

    5. [5]

      [5] H. Li, L.L. Tan, P. Jia, et al., Near-infrared light-responsive supramolecular nanovalve based on mesoporous silica-coated gold nanorods, Chem. Sci. 5 (2014) 2804–2808.

    6. [6]

      [6] N.J. Wheate, G.M. Abbott, R.J. Tate, et al., Side-on binding of p-sulphonatocalix[4]- arene to the dinuclear platinum complex trans-[{PtCl(NH3)2}2μ-dpzm]2+ and its implications for anticancer drug delivery, J. Inorg. Biochem. 103 (2009) 448–454.

    7. [7]

      [7] G.S. Wang, H.Y. Zhang, F. Ding, Y. Liu, Preparation and characterization of inclusion complexes of topotecan with sulfonatocalixarene, J. Incl. Phenom. Macrocycl. Chem. 69 (2011) 85–89.

    8. [8]

      [8] J. Song, H. Li, J. Chao, et al., Spectroscopic studies on the inclusion interaction of psulfonatocalix[ 6]arene with vitamin B6, J. Incl. Phenom. Macrocycl. Chem. 72 (2012) 389–395.

    9. [9]

      [9] X. Wang, C. Luo, Z. Lv, F. Lu, Investigation of the inclusion behavior between psulfoniccalix[8]arene and norfloxacin by fluorescence spectroscopy, J. Lumin. 131 (2011) 1986–1990.

    10. [10]

      [10] D.S. Guo, J. Yang, Y. Liu, Specifically monitoring butyrylcholinesterase by supramolecular tandem assay, Chem. Eur. J. 19 (2013) 8755–8759.

    11. [11]

      [11] C. Tu, L. Zhu, P. Li, et al., Supramolecular polymeric micelles by the host–guest interaction of star-like calix[4]arene and chlorin e6 for photodynamic therapy, Chem. Commun. 47 (2011) 6063–6065.

    12. [12]

      [12] Z. Qin, D.S. Guo, X.N. Gao, Y. Liu, Supra-amphiphilic aggregates formed by psulfonatocalix[4]arenes and the antipsychotic drug chlorpromazine, Soft Matter 10 (2014) 2253–2263.

    13. [13]

      [13] J. Zhang, D.S. Guo, L.H. Wang, et al., Supramolecular binary hydrogels from calixarenes and amino acids and their entrapment-release of model dye molecules, Soft Matter 7 (2011) 1756–1762.

    14. [14]

      [14] Q. Duan, Y. Cao, Y. Li, et al., pH-Responsive supramolecular vesicles based on water-soluble pillar[6]arene and ferrocene derivative for drug delivery, J. Am. Chem. Soc. 135 (2013) 10542–10549.

    15. [15]

      [15] J. Gualbert, P. Shahgaldian, A.W. Coleman, Interactions of amphiphilic calix[4]- arene-based solid lipid nanoparticles with bovine serum albumin, Int. J. Pharm. 257 (2003) 69–73.

    16. [16]

      [16] S. Aleandri, A. Casnati, L. Fantuzzi, et al., Incorporation of a calixarene-based glucose functionalised bolaamphiphile into lipid bilayers for multivalent lectin recognition, Org. Biomol. Chem. 11 (2013) 4811–4817.

    17. [17]

      [17] Y. Chen, P. Xu, M. Wu, et al., Colloidal RBC-shaped, hydrophilic, and hollow mesoporous carbon nanocapsules for highly efficient biomedical engineering, Adv. Mater. 26 (2014) 4294–4301.

    18. [18]

      [18] C. Wang, Z. Li, D. Cao, et al., Stimulated release of size-selected cargos in succession from mesoporous silica nanoparticles, Angew. Chem. Int. Ed. 51 (2012) 5460–5465.

    19. [19]

      [19] Y.L. Sun, B.J. Yang, S.X.A. Zhang, Y.W. Yang, Cucurbit[7]uril pseudorotaxane-based photoresponsive supramolecular nanovalve, Chem. Eur. J. 18 (2012) 9212–9216.

    20. [20]

      [20] L. Callego-Yerga, M. Lomazzi, F. Sansone, et al., Glycoligand-targeted core–shell nanospheres with tunable drug release profiles from calixarene–cyclodextrin heterodimers, Chem. Commun. 50 (2014) 7440–7443.

    21. [21]

      [21] V. Bohmer, Calixarenes, macrocycles with (almost) unlimited possibilities, Angew. Chem. Int. Ed. 34 (1995) 713–745.

    22. [22]

      [22] D.S. Guo, Y. Liu, Supramolecular chemistry of p-sulfonatocalix[n]arenes and its biological applications, Acc. Chem. Res. 47 (2014) 1925–1934.

    23. [23]

      [23] Y.W. Yang, Y.L. Sun, N. Song, Switchable host–guest systems on surfaces, Acc. Chem. Res. 47 (2014) 1950–1960.

    24. [24]

      [24] Q. Li, D.S. Guo, H. Qian, Y. Liu, Complexation of p-sulfonatocalixarenes with local anaesthetics guests: binding structures, stabilities, and thermodynamic origins, Eur. J. Org. Chem. (2012) 3962–3971.

    25. [25]

      [25] X. Zhang, H. Zhao, X. Cao, et al., Hg2+ wettability and fluorescence dual-signal responsive switch based on a cysteine complex of piperidine-calix[4]arene, Org. Biomol. Chem. 11 (2013) 8262–8268.

    26. [26]

      [26] J.V. Assis, M.G. Teixeira, C.G.P. Soares, et al., Experimental and theoretical NMR determination of isoniazid and sodium p-sulfonatocalix[n]arenes inclusion complexes, Eur. J. Pharm. Sci. 47 (2012) 539–548.

    27. [27]

      [27] G.S. Wang, H.Y. Zhang, D. Li, et al., Characterisation and antiproliferative activity of irinotecan and sulphonatocalixarene inclusion complex, Supramol. Chem. 23 (2011) 441–446.

    28. [28]

      [28] Y. Xue, Y. Guan, A. Zheng, H. Xiao, Amphoteric calix[8]arene-based complex for pH-triggered drug delivery, Colloids Surf. B: Biointerfaces 101 (2013) 55–60.

    29. [29]

      [29] E. James, P.K. Eggers, A.R. Harvey, et al., Antioxidant phospholipid calix[4]arene mimics as micellular delivery systems, Org. Biomol. Chem. 11 (2013) 6108–6112.

    30. [30]

      [30] M. Ma, P. Xing, S. Li, et al., Advances of host-guest supramolecular vesicles and their properties in drug delivery, Prog. Chem. 26 (2014) 1317–1328.

    31. [31]

      [31] M. Lee, S.J. Lee, L.H. Jiang, Stimuli-responsive supramolecular nanocapsules from amphiphilic calixarene assembly, J. Am. Chem. Soc. 126 (2004) 12724–12725.

    32. [32]

      [32] K. Wang, D.S. Guo, Y. Liu, Temperature-controlled supramolecular vesicles modulated by p-sulfonatocalix[5]arene with pyrene, Chem. Eur. J. 16 (2010) 8006– 8011.

    33. [33]

      [33] K. Wang, D.S. Guo, M.Y. Zhao, Y. Liu, A supramolecular vesicle based on the complexation of p-sulfonatocalixarene with protamine and its trypsin-triggered controllable-release properties, Chem. Eur. J. (2014), http://dx.doi.org/10.1002/ chem.201303963.

    34. [34]

      [34] S. Ehrler, U. Pieles, A. Wirth-Heller, P. Shahgaldian, Surface modification of resorcinarene based self-assembled solid lipid nanoparticles for drug targeting, Chem. Commun. (2007) 2605–2607.

    35. [35]

      [35] E. Drakalska, D. Momekova, Y. Manolova, et al., Hybrid liposomal PEGylated calix[4]arene systems as drug delivery platforms for curcumin, Int. J. Pharm. 472 (2014) 165–174.

    36. [36]

      [36] J. Liu, W. Bu, L. Pan, J. Shi, NIR-triggered anticancer drug delivery by upconverting nanoparticles with integrated azobenzene-modified mesoporous silica, Angew. Chem. Int. Ed. 52 (2013) 4375–4379.

    37. [37]

      [37] Q.L. Li, Y. Sun, Y.L. Sun, et al., Mesoporous silica nanoparticles coated by layer-bylayer self-assembly using cucurbit[7]uril for in vitro and in vivo anticancer drug release, Chem. Mater. 26 (2014) 6418–6431.

    38. [38]

      [38] Y.L. Sun, Y. Zhou, Q.L. Li, Y.W. Yang, Enzyme-responsive supramolecular nanovalves crafted by mesoporous silica nanoparticles and choline-sulfonatocalix[4]- arene [2]pseudorotaxanes for controlled cargo release, Chem. Commun. 49 (2013) 9033–9035.

    39. [39]

      [39] Y. Zhou, L.L. Tan, Q.L. Li, et al., Acetylcholine-triggered cargo release from supramolecular nanovalves based on different macrocyclic receptors, Chem. Eur. J. 20 (2014) 2998–3004.

    40. [40]

      [40] H. Li, Y.W. Yang, Gold nanoparticles functionalized with supramolecular macrocycles, Chin. Chem. Lett. 24 (2013) 545–552.

    41. [41]

      [41] L. Wang, L.L. Li, H.L. Ma, H. Wang, Recent advances in biocompatible supramolecular assemblies for biomolecular detection and delivery, Chin. Chem. Lett. 24 (2013) 351–358.

  • 加载中
    1. [1]

      Ningyue XuJun WangLei LiuChangyang Gong . Injectable hydrogel-based drug delivery systems for enhancing the efficacy of radiation therapy: A review of recent advances. Chinese Chemical Letters, 2024, 35(8): 109225-. doi: 10.1016/j.cclet.2023.109225

    2. [2]

      Xin LiZhen XuDonglei BuJinming CaiHuamei ChenQi ChenTing ChenFang ChengLifeng ChiWenjie DongZhenchao DongShixuan DuQitang FanXing FanQiang FuSong GaoJing GuoWeijun GuoYang HeShimin HouYing JiangHuihui KongBaojun LiDengyuan LiJie LiQing LiRuoning LiShuying LiYuxuan LinMengxi LiuPeinian LiuYanyan LiuJingtao LüChuanxu MaHaoyang PanJinLiang PanMinghu PanXiaohui QiuZiyong ShenShijing TanBing WangDong WangLi WangLili WangTao WangXiang WangXingyue WangXueyan WangYansong WangYu WangKai WuWei XuNa XueLinghao YanFan YangZhiyong YangChi ZhangXue ZhangYang ZhangYao ZhangXiong ZhouJunfa ZhuYajie ZhangFeixue GaoYongfeng Wang . Recent progress on surface chemistry Ⅰ: Assembly and reaction. Chinese Chemical Letters, 2024, 35(12): 110055-. doi: 10.1016/j.cclet.2024.110055

    3. [3]

      Nianqiang JiangYiqiang OuYanpeng ZhuDingyong ZhongJiaobing Wang . Assembly of fullerenes using a highly preorganized janusarene. Chinese Chemical Letters, 2025, 36(4): 110004-. doi: 10.1016/j.cclet.2024.110004

    4. [4]

      Zhu ShuXin LeiYeye AiKe ShaoJianliang ShenZhegang HuangYongguang Li . ATP-induced supramolecular assembly based on chromophoric organic molecules and metal complexes. Chinese Chemical Letters, 2024, 35(11): 109585-. doi: 10.1016/j.cclet.2024.109585

    5. [5]

      Xueyan ZhangJicong ChenSongren HanShiyan DongHuan ZhangYuhong ManJie YangYe BiLesheng Teng . The size-switchable microspheres co-loaded with RANK siRNA and salmon calcitonin for osteoporosis therapy. Chinese Chemical Letters, 2024, 35(12): 109668-. doi: 10.1016/j.cclet.2024.109668

    6. [6]

      Han WuYumei WangZekai RenHailin CongYouqing ShenBing Yu . The nanocarrier strategy for crossing the blood-brain barrier in glioma therapy. Chinese Chemical Letters, 2025, 36(4): 109996-. doi: 10.1016/j.cclet.2024.109996

    7. [7]

      Fengjie LiuFansu MengZhenjiang YangHuan WangYuehong RenYu CaiXingwang Zhang . Exosome-biomimetic nanocarriers for oral drug delivery. Chinese Chemical Letters, 2024, 35(9): 109335-. doi: 10.1016/j.cclet.2023.109335

    8. [8]

      Linghui ZouMeng ChengKaili HuJianfang FengLiangxing Tu . Vesicular drug delivery systems for oral absorption enhancement. Chinese Chemical Letters, 2024, 35(7): 109129-. doi: 10.1016/j.cclet.2023.109129

    9. [9]

      Wen XiaoFazhan WangYangzhuo GuXi HeNa FanQian ZhengShugang QinZhongshan HeYuquan WeiXiangrong Song . PEG400-mediated nanocarriers improve the delivery and therapeutic efficiency of mRNA tumor vaccines. Chinese Chemical Letters, 2024, 35(5): 108755-. doi: 10.1016/j.cclet.2023.108755

    10. [10]

      Yujie LiYa-Nan WangYin-Gen LuoHongcai YangJinrui RenXiao Li . Advances in synthetic biology-based drug delivery systems for disease treatment. Chinese Chemical Letters, 2024, 35(11): 109576-. doi: 10.1016/j.cclet.2024.109576

    11. [11]

      Shunliu Deng Haifeng Su Yaxian Zhu Yuzhi Wang Yuhua Weng Zhaobin Chen Shunü Peng Yinyun Lü Xinyi Hong Yiru Wang Xiaozhen Huang Zhimin Lin Lansun Zheng . Course Ideological and Political Design for Self-Building Experiments of Scientific Instruments: Taking the Construction, Debugging, and Application of Teaching Mass Spectrometer as an Example. University Chemistry, 2024, 39(2): 127-132. doi: 10.3866/PKU.DXHX202308002

    12. [12]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    13. [13]

      Jiechen LiuXiaoguang LiRuiyang XiaYuqi WangFenghe ZhangYongzhi PangQing Li . Efficient suppression of oral squamous cell carcinoma through spatial dimension conversion drug delivery systems-enabled immunomodulatory-photodynamic therapy. Chinese Chemical Letters, 2024, 35(12): 109619-. doi: 10.1016/j.cclet.2024.109619

    14. [14]

      Yutong Xiong Ting Meng Wendi Luo Bin Tu Shuai Wang Qingdao Zeng . Molecular conformational effects on co-assembly systems of low-symmetric carboxylic acids investigated by scanning tunneling microscopy. Chinese Journal of Structural Chemistry, 2025, 44(2): 100511-100511. doi: 10.1016/j.cjsc.2025.100511

    15. [15]

      Ziqin LiKai HaoLongwei XiangHuayu Tian . Cationic covalent organic framework nanocarriers integrating both efficient gene silencing and real-time gene detection. Chinese Chemical Letters, 2025, 36(4): 109943-. doi: 10.1016/j.cclet.2024.109943

    16. [16]

      Zhiwen Li Jingjing Zhang Gao Li . Dynamic assembly of chiral golden knots. Chinese Journal of Structural Chemistry, 2024, 43(7): 100300-100300. doi: 10.1016/j.cjsc.2024.100300

    17. [17]

      Zhilong XieGuohui ZhangYa MengYefei TongJian DengHonghui LiQingqing MaShisong HanWenjun Ni . A natural nano-platform: Advances in drug delivery system with recombinant high-density lipoprotein. Chinese Chemical Letters, 2024, 35(11): 109584-. doi: 10.1016/j.cclet.2024.109584

    18. [18]

      Yi CaoXiaojiao GeYuanyuan WeiLulu HeAiguo WuJuan Li . Tumor microenvironment-activatable neuropeptide-drug conjugates enhanced tumor penetration and inhibition via multiple delivery pathways and calcium deposition. Chinese Chemical Letters, 2024, 35(4): 108672-. doi: 10.1016/j.cclet.2023.108672

    19. [19]

      Xingqun PuRongrong LiuYuting XieChenjing YangJingyi ChenBaoling GuoChun-Xia ZhaoPeng ZhaoJian RuanFangfu YeDavid A WeitzDong Chen . One-step preparation of biocompatible amphiphilic dimer nanoparticles with tunable particle morphology and surface property for interface stabilization and drug delivery. Chinese Chemical Letters, 2025, 36(3): 109820-. doi: 10.1016/j.cclet.2024.109820

    20. [20]

      Wenlong LiFeishi ShanQingdong BaoQinghua LiHua GaoLeyong Wang . Supramolecular assembly nanoparticle for trans-epithelial treatment of keratoconus. Chinese Chemical Letters, 2024, 35(10): 110060-. doi: 10.1016/j.cclet.2024.110060

Metrics
  • PDF Downloads(0)
  • Abstract views(713)
  • HTML views(30)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return