Citation: Hai-Peng Gong, Yue Zhang, Yu-Xia Da, Zhang Zhang, Zheng-Jun Quan, Xi-Cun Wang. Direct amination of pyrimidin-2-yl tosylates with aqueous ammonia under metal-free and mild conditions[J]. Chinese Chemical Letters, ;2015, 26(6): 667-671. doi: 10.1016/j.cclet.2015.01.034 shu

Direct amination of pyrimidin-2-yl tosylates with aqueous ammonia under metal-free and mild conditions

  • Corresponding author: Zheng-Jun Quan,  Xi-Cun Wang, 
  • Received Date: 3 December 2014
    Available Online: 21 January 2015

    Fund Project: Gansu Provincial Department of Finance and the Education Department of Gansu Province (No. 2013B-010). (No. 1208RJYA083)

  • Ametal-free synthesis of pyrimidine functionalized primary amines via direct amination of pyrimidin-2-yl tosylate with aqueous ammonia has been developed under mild conditions. The desired products pyrimidin-2-amines can be generated in excellent yields in PEG-400, without any catalysts or other additives.
  • 加载中
    1. [1]

      [1] (a) M. Negwer, Organic Drugs and Their Synonyms, 7th ed., Akademie Verlag Gmbh, Berlin, 1994; (b) S. Suwanprasop, T. Nhujak, S. Roengsumran, A. Petsom, Petroleum marker dyes synthesized from cardanol and aniline derivatives, Ind. Eng. Chem. Res. 43 (2004) 4973-4978.

    2. [2]

      [2] For reviews see: (a) D.M. Roundhill, Transition metal and enzyme catalyzed reactions involving reactions with ammonia and amines, Chem. Rev. 92 (1992) 1-27; (b) J.I. Van der Vlugt, Advances in selective activation and application of ammonia in homogeneous catalysis, Chem. Soc. Rev. 39 (2010) 2302-2322; (c) J.L. Klinkenberg, J.F. Hartwig, Catalytic organometallic reactions of ammonia, Angew. Chem. Int. Ed. 50 (2011) 86-95.

    3. [3]

      [3] (a) A.W. Heinen, J.A. Peters, H. Van Bekkum, The reductive amination of benzaldehyde over Pd/C catalysts: mechanism and effect of carbon modifications on the selectivity, Eur. J. Org. Chem. 13 (2000) 2501-2506; (b) T. Gross, A.M. Seayad, M. Ahmad, M. Beller, Synthesis of primary amines: first homogeneously catalyzed reductive amination with ammonia, Org. Lett. 4 (2002) 2055-2058;(c) S. Ogo, K. Uehara, T. Abura, S. Fukuzumi, pH-dependent chemoselective synthesis of α-amino acids. Reductive amination of α-keto acids with ammonia catalyzed by acid-stable iridium hydride complexes in water, J. Am. Chem. Soc. 126 (2004) 3020-3021.

    4. [4]

      [4] (a) S. Hong, T.J. Marks, Organolanthanide-catalyzed hydroamination, Acc. Chem. Res. 37 (2004) 673-686; (b) V. Lavallo, G.D. Frey, B. Donnadieu, M. Soleilhavoup, G. Bertrand, Homogeneous catalytic hydroamination of alkynes and allenes with ammonia, Angew. Chem. Int. Ed. 47 (2008) 5224-5228; (c) J. Seayad, A. Tillack, C.G. Hartung, M. Beller, Base-catalyzed hydroamination of olefins: an environmentally friendly route to amines, Adv. Synth. Catal. 344 (2002) 795-813; (d) M. Lequitte, F. Figueras, C. Moreau, S. Hub, Amination of butenes over protonic zeolites, J. Catal. 163 (1996) 255-261; (e) C.A. Tsipis, C.E. Kefalidis, How efficient are the hydrido-bridged diplatinum catalysts in the hydrosilylation, hydrocyanation, and hydroamination of alkynes: a theoretical analysis of the catalytic cycles employing electronic structure calculation methods, Organometallics 25 (2006) 1696-1706.

    5. [5]

      [5] (a) E.I. du Pont de Nemours & Co., Synthesis of amines, US Patent 2497310, United States (1950).; (b) J.J. Lin, J.F. Knifton, Process for synthesis of primary amines from olefins, syngas and ammonia, US Patent 4794199, N. Texaco Inc. (White Plains), United States (1988). (c) B. Zimmermann, J. Herwig, M. Beller, The first efficient hydroaminomethylation with ammonia: with dual metal catalysts and two-phase catalysis to primary amines, Angew. Chem. Int. Ed. 38 (1999) 2372-2375.

    6. [6]

      [6] (a) J. Tsuji, M. Takahashi, Palladium-catalyzed telomerization of butadiene with ammonia, J. Mol. Catal. 10 (1981) 107; (b) B. Driessen-Holscher, in: B. Cornils (Ed.), Multiphase Homogeneous Catalysis, Wiley-VCH, Weinheim, 2005, 238 and references therein.

    7. [7]

      [7] (a) K. Weissermel, H.J. Arpe, Industry Organic Chemistry, Wiley-VCH, Weinheim, 1997; (b) Y.B. Jiang, W.S. Zhang, H.L. Cheng, Y.Q. Liu, R. Yang, One-pot synthesis of Naryl propargylamine from aromatic boronic acid, aqueous ammonia, and propargyl bromide under microwave-assisted conditions, Chin. Chem. Lett. 25 (2014) 779-782.

    8. [8]

      [8] (a) S.A. Lawrence, Amines: Synthesis Properties, and Application, Cambridge University Press, Cambridge, 2004; (b) M.C. Willis, Palladium-catalyzed coupling of ammonia and hydroxide with aryl halides: the direct synthesis of primary anilines and phenols, Angew. Chem. Int. Ed. 46 (2007) 3402-3404; (c) S. Bahn, S. Imm, L. Neubert, et al., Synthesis of primary amines from secondary and tertiary amines: ruthenium-catalyzed amination using ammonia, Chem. Eur. J. 17 (2011) 4705-4708;(d) K. Das, R. Shibuya, Y. Nakahara, et al., Platinum-catalyzed direct amination of allylic alcohols with aqueous ammonia: selective synthesis of primary allylamines, Angew. Chem. Int. Ed. 51 (2012) 150-154.

    9. [9]

      [9] Examples for palladium-catalyzed formation of aromatic amines: (a) Q. Shen, J.F. Hartwig, Palladium-catalyzed coupling of ammonia and lithium amide with aryl halides, J. Am. Chem. Soc. 128 (2006) 10028-10029; (b) D.S. Surry, S.L. Buchwald, Selective palladium-catalyzed arylation of ammonia: synthesis of anilines as well as symmetrical and unsymmetrical di-and triarylamines, J. Am. Chem. Soc. 129 (2007) 10354-10355; (c) X.H. Huang, S.L. Buchwald, New ammonia equivalents for the Pd-catalyzed amination of aryl halides, Org. Lett. 3 (2001) 3417-3419; (d) S. Lee, M. Jogensen, J.F. Hartwig, Palladium-catalyzed synthesis of arylamines from aryl halides and lithium bis(trimethylsilyl)amide as an ammonia equivalent, Org. Lett. 3 (2001) 2729-2732; (e) D.Y. Lee, J.F. Hartwig, Zinc trimethylsilylamide as a mild ammonia equivalent and base for the amination of aryl halides and triflates, Org. Lett. 7 (2005) 1169-1172; (f) X.H. Huang, K.W. Anderson, D. Zim, et al., Expanding Pd-catalyzed C-N bondforming processes: the first amidation of aryl sulfonates, aqueous amination, and complementarity with Cu-catalyzed reactions, J. Am. Chem. Soc. 125 (2003) 6653-6655; (g) J. Barluenga, F. Aznar, C. Valdes, N-trialkylsilylimines as coupling partners for Pd-catalyzed C-N bond-forming reactions: one-step synthesis of imines and azadienes from aryl and alkenyl bromides, Angew. Chem. Int. Ed. 43 (2004) 343-345; (h) J. Yin, S.L. Buchwald, Palladium-catalyzed intermolecular coupling of aryl halides and amides, Org. Lett. 2 (2000) 1101-1104.

    10. [10]

      [10] Examples for copper-catalyzed formation of aromatic amines: (a) J.M. Chen, T.J. Yuan, W.Y. Hao, M.Z. Cai, Simple and efficient CuI/PEG-400 system for amination of aryl halides with aqueous ammonia, Tetrahedron Lett. 52 (2011) 3710-3713; (b) Y. Li, X.H. Zhu, F. Meng, Y.Q. Wan, Copper/oxalohydrazide/ketone catalyzed synthesis of primary arylamines via coupling of aryl halides with aqueous ammonia in water, Tetrahedron 67 (2011) 5450-5454; (c) F.Meng, X.H. Zhu, Y. Li, et al., Efficient copper-catalyzed direct amination of aryl halides using aqueous ammonia in water, Eur. J. Org. Chem. 32 (2010) 6149-6152; (d) Z.Q.Wu, Z.Q. Jiang, D.Wu, H.F. Xiang, X.G. Zhou, A simple and efficient catalytic system for coupling aryl halides with aqueousammonia in water, Eur. J. Org. Chem. 10 (2010) 1854-1857; (e) N. Xia, M. Taillefer, A very simple copper-catalyzed synthesis of anilines by employing aqueous ammonia, Angew. Chem. Int. Ed. 48 (2009) 337-339; (f) R. Ntaganda, B. Dhudshia, C.L.B. Macdonald, A. Thadani, Cross-coupling of aryl/heteroaryl bromides with ammonia using a copper-carbene catalyst, Chem. Commun. 46 (2008) 6200-6202; (g) J. Kim, S. Chang, Ammonium salts as an inexpensive and convenient nitrogen source in the Cu-catalyzed amination of aryl halides at room temperature, Chem. Commun. 26 (2008) 3052-3054; (h) F. Lang, D. Zewge, I.N. Houpis, R.P. Volante, Amination of aryl halides using copper catalysis, Tetrahedron Lett. 42 (2001) 3251-3254; (i) S. Gaillard, M.K. Elmkaddem, C. Fischmeister, C.M. Thomas, J.L. Renaud, Highly efficient and economic synthesis of new substituted amino-bispyridyl derivatives via copper and palladium catalysis, Tetrahedron Lett. 49 (2008) 3471-3474; (j) X. Gao, H. Fu, R. Qiao, Y. Jiang, Y. Zhao, Copper-catalyzed synthesis of primary arylamines via cascade reactions of aryl halideswithamidine hydrochlorides, J. Org. Chem. 73 (2008) 6864-6866; (k) H. Xu, C. Wolf, Efficient copper-catalyzed coupling of aryl chlorides, bromides and iodides with aqueous ammonia, Chem. Commun. 48 (2009) 3035-3037; (l) D.P.Wang, Q. Cai,K. Ding,Anefficient copper-catalyzedaminationof aryl halides by aqueous ammonia, Adv. Synth. Catal. 351 (2009) 1722-1726; (m) P.J. Ji, J.H. Atherton, I. Michael, Copper(I)-catalyzed amination of aryl halides in liquid ammonia, J. Org. Chem. 77 (2012) 7471-7478; (n) J.X. Zhang, H.Q. Yin, S.Q. Han, Copper-catalyzed N-arylations of nitrogen-containing heterocycles in water, Chin. J. Org. Chem. 32 (2012) 1429-1433; (o) W. Liu, Y.L. Bi, Progress in copper-catalyzed direct arylation of aromatic C-H bonds, Chin. J. Org. Chem. 32 (2012) 1041-1050.

    11. [11]

      [11] C.O. Kappe, Biologically active dihydropyrimidones of the Biginelli-type-A literature survey, Eur. J. Med. Chem. 35 (2000) 1043-1052.

    12. [12]

      [12] (a) C.O. Kappe, 100 years of the Biginelli dihydropyrimidine synthesis, Tetrahedron 49 (1993) 6937-6963; (b) C.O. Kappe, Recent advances in the Biginelli dihydropyrimidine synthesis. New tricks from an old dog, Acc. Chem. Res. 33 (2000) 879-888; (c) C.O. Kappe, A. Stadler, The Biginelli dihydropyrimidine synthesis, Org. React. 63 (2004) 1-117; (d) K. Singh, D. Arora, K. Singh, S. Singh, Genesis of dihydropyrimidinone calcium channel blockers: recent progress in structure-activity relationships and other effects, Med. Chem. 9 (2009) 95-106.

    13. [13]

      [13] (a) Z.J. Quan, H.D. Xia, Z. Zhang, Y.X. Da, X.C. Wang, An efficient copper-catalyzed N-arylation of amides: synthesis of N-arylacrylamides and 4-amido-N-phenylbenzamides, Tetrahedron 69 (2013) 8368-8374; (b) Z.J. Quan, H.D. Xia, Z. Zhang, Y.X. Da, X.C. Wang, Copper-catalyzed amination of aryl halides with aqueous ammonia under mild conditions, Chin. J. Chem. 31 (2013) 501-506; (c) Z.J. Quan, W.H. Hu, X.D. Jia, et al., A domino desulfitative coupling/acylation/hydration process cocatalyzed by copper(i) and palladium(ii): synthesis of highly substituted and functionalized fyrimidines, Adv. Synth. Catal. 354 (2012) 2939-2948; (d) Z.J. Quan, Y. Lv, Z.J. Wang, et al., Molecular iodine-mediated S-N and C-N cross-coupling and oxidative aromatization of 3,4-dihydropyrimidin-2(1H)-thiones with secondary amines, Tetrahedron Lett. 54 (2013) 1884-1887; (e) Z.J. Quan, W.H. Hu, Z. Zhang, et al., One-pot synthesis of allylamine derivatives by iodine-catalyzed three-component reaction of N-heterocycles, paraformaldehyde and styrenes, Adv. Synth. Catal. 355 (2013) 891-900; (f) Y.X. Da, Z. Zhang, Z.J. Quan, Intermolecular cyclocondensation reaction of 3,4-dihydropyrimidine-2-thione under the Mitsunobu reaction conditions, Chin. Chem. Lett. 22 (2011) 679; (g) X.C. Wang, G.J. Yang, Z.J. Quan, P.Y. Ji, J.L. Liang, R.G. Ren, Synthesis of 2-substituted pyrimidines via cross-coupling reaction of pyrimidin-2-yl sulfonates with nucleophiles in polyethylene glycol 400, Synlett 11 (2010) 1657-1660.

    14. [14]

      [14] For a review, see: I.M. Lagoja, Pyrimidine as constituent of natural biologically active compounds, Chem. Biodiversity 2 (2005) 1-50.

    15. [15]

      [15] (a) K.B. Goodman, D. Lee, C.A. Sehon, A.Q. Viet, G.Z. Wang, Novel inhibitors of rhokinases, Int. Patent Appl. WO 2006009889 (2006).; (b) D. Drewry, B. Evans, K.B. Goodman, et al., Chemical compounds, Int. Patent Appl. WO 2004112719 A8 (2004).

    16. [16]

      [16] J.M. Nuss, S.D. Harrison, D.B. Ring, et al., U.S. Patent 6,417,185 (2002); Chem. Abstr. 137 (2002) 325431

    17. [17]

      [17] S. Fujita, M. Hagihara, S. Iwayama, et al., Novel pyrimidine derivative and novel pyridine derivative, Int. Patent Appl. WO 2002022588 A1 (2002)

    18. [18]

      [18] M. Watanabe, H. Koike, T. Ishiba, et al., Synthesis and biological activity of methanesulfonamide pyrimidine-and N-methanesulfonyl pyrrole-substituted 3,5-dihydroxy-6-heptenoates, a novel series of HMG-CoA reductase inhibitors, Bioorg. Med. Chem. 5 (1997) 437-444.

    19. [19]

      [19] Some examples for the synthesis of Rosuvastatin involves 2-amino-pyrimidine-5-carboxylates, see:; (a) V. Niddam-Hildesheim, K. Chen, A process for the preparation of rosuvastatin involving a tempo-mediated oxidation step, Int. Patent Appl. WO 2006017357 (2006).; (b) S. Gudipati, S. Katkam, R.R. Sagyam, J.S. Kudavalli, Processes to produce intermediates for rosuvastatin, U.S. Patent 2006004200 (2006).; (c) S. Ahmad, J.A. Robl, K. Ngu, Pyrimidine and pyridine derivatives useful as hmgcoa reductase inhibitors and method of preparation thereof, Int. Patent Appl. WO 2005030758 (2005).; (d) N. End, Y. Richter, Process for the preparation of pyrimidine derivatives, Int. Patent Appl. WO 2004103977 (2004).

    20. [20]

      [20] R. Capdeville, E. Buchdunger, J. Zimmermann, A. Matter, Glivec (ST1571, Imatinib), a rationally developed, targeted anticancer drug, Nat. Rev. Drug Discov. 1 (2002) 493-502.

    21. [21]

      [21] (a) P. Dorigo, D. Fraccarollo, G. Santostasi, et al., Synthesis and cardiotonic activity of novel pyrimidine derivatives: crystallographic and quantum chemical studies, J. Med. Chem. 39 (1996) 3671-3683; (b) S. Nagarajan, P. Shanmugavelan, M. Sathishkumar, et al., An eco-friendly water mediated synthesis of 1,2,3-triazolyl-2-aminopyrimidine hybrids as highly potent anti-bacterial agents, Chin. Chem. Lett. 25 (2014) 419-422.

    22. [22]

      [22] M. Matloobi, C.O. Kappe, Microwave-assisted solution-and solid-phase synthesis of 2-amino-4-arylpyrimidine derivatives, ACS. Comb. Sci. 9 (2007) 275-284.

  • 加载中
    1. [1]

      Sajid MahmoodHaiyan WangFang ChenYijun ZhongYong Hu . Recent progress and prospects of electrolytes for electrocatalytic nitrogen reduction toward ammonia. Chinese Chemical Letters, 2024, 35(4): 108550-. doi: 10.1016/j.cclet.2023.108550

    2. [2]

      Hong-Rui LiXia KangRui GaoMiao-Miao ShiBo BiZe-Yu ChenJun-Min Yan . Interfacial interactions of Cu/MnOOH enhance ammonia synthesis from electrochemical nitrate reduction. Chinese Chemical Letters, 2025, 36(2): 109958-. doi: 10.1016/j.cclet.2024.109958

    3. [3]

      Haijiao LiuQiao FengYu HuangFeng WuYali LiuMinxia ShenXiao GuoWenting DaiWeining QiYifan ZhangLu LiQiyuan WangBianhong ZhouJianjun Li . Composition and size distribution of wintertime inorganic aerosols at ground and alpine regions of northwest China. Chinese Chemical Letters, 2024, 35(11): 109636-. doi: 10.1016/j.cclet.2024.109636

    4. [4]

      Ting XieXun HeLang HeKai DongYongchao YaoZhengwei CaiXuwei LiuXiaoya FanTengyue LiDongdong ZhengShengjun SunLuming LiWei ChuAsmaa FaroukMohamed S. HamdyChenggang XuQingquan KongXuping Sun . CoSe2 nanowire array enabled highly efficient electrocatalytic reduction of nitrate for ammonia synthesis. Chinese Chemical Letters, 2024, 35(11): 110005-. doi: 10.1016/j.cclet.2024.110005

    5. [5]

      Yiwen XuChaozheng HeChenxu ZhaoLing Fu . Single-atom Ti doping on S-vacancy two-dimensional CrS2 as a catalyst for ammonia synthesis: A DFT study. Chinese Chemical Letters, 2025, 36(4): 109797-. doi: 10.1016/j.cclet.2024.109797

    6. [6]

      Wen XiaoFazhan WangYangzhuo GuXi HeNa FanQian ZhengShugang QinZhongshan HeYuquan WeiXiangrong Song . PEG400-mediated nanocarriers improve the delivery and therapeutic efficiency of mRNA tumor vaccines. Chinese Chemical Letters, 2024, 35(5): 108755-. doi: 10.1016/j.cclet.2023.108755

    7. [7]

      Hang Wang Qi Wang Chuan-De Wu . Continuous synthesis of ammonia. Chinese Journal of Structural Chemistry, 2025, 44(3): 100437-100437. doi: 10.1016/j.cjsc.2024.100437

    8. [8]

      Ze-Yuan MaMei XiaoCheng-Kun LiAdedamola ShoberuJian-Ping ZouS-(1,3-Dioxoisoindolin-2-yl)O,O-diethyl phosphorothioate (SDDP): A practical electrophilic reagent for the phosphorothiolation of electron-rich compounds. Chinese Chemical Letters, 2024, 35(5): 109076-. doi: 10.1016/j.cclet.2023.109076

    9. [9]

      Jiangping Chen Hongju Ren Kai Wu Huihuang Fang Chongqi Chen Li Lin Yu Luo Lilong Jiang . Boosting hydrogen production of ammonia decomposition via the construction of metal-oxide interfaces. Chinese Journal of Structural Chemistry, 2024, 43(2): 100236-100236. doi: 10.1016/j.cjsc.2024.100236

    10. [10]

      Chunqing OuMeijia XiaoXinyue ZhengXianzhou HuangSuleixin YangYingying LengXiaowei LiuXiuqi LiangLinjiang SongYanjie YouShaohua YaoChangyang Gong . Programmable double-unlock nanocomplex self-supplies phenylalanine ammonia-lyase for precise phenylalanine deprivation of tumors. Chinese Chemical Letters, 2024, 35(8): 109275-. doi: 10.1016/j.cclet.2023.109275

    11. [11]

      Ying ChenXingyuan XiaLei TianMengying YinLing-Ling ZhengQian FuDaishe WuJian-Ping Zou . Constructing built-in electric field via CuO/NiO heterojunction for electrocatalytic reduction of nitrate at low concentrations to ammonia. Chinese Chemical Letters, 2024, 35(12): 109789-. doi: 10.1016/j.cclet.2024.109789

    12. [12]

      Wenqing DengFanfeng DengTing ZhangJunjie LinLiang ZhaoGang LiYi PanJiebin Yang . Continuous measurement of reactive ammonia in hydrogen fuel by online dilution module coupled with Fourier transform infrared spectrometer. Chinese Chemical Letters, 2025, 36(3): 110085-. doi: 10.1016/j.cclet.2024.110085

    13. [13]

      Xue ZhaoMengshan ChenDan WangHaoran ZhangGuangzhi HuYingtang Zhou . Ultrafine nano-copper derived from dopamine polymerization & synchronous adsorption achieve electrochemical purification of nitrate to ammonia in complex water environments. Chinese Chemical Letters, 2024, 35(8): 109327-. doi: 10.1016/j.cclet.2023.109327

    14. [14]

      Yuxin WangZhengxuan SongYutao LiuYang ChenJinping LiLibo LiJia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779

    15. [15]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    16. [16]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    17. [17]

      Shengwen GuanZhaotong WeiNingxu HanYude WeiBin XuMing WangJunjuan Shi . Construction of metallo-complexes with 2,2′:6′,2″-terpyridine substituted triphenylamine in different modified positions and their photophysical properties. Chinese Chemical Letters, 2024, 35(7): 109348-. doi: 10.1016/j.cclet.2023.109348

    18. [18]

      Maomao Liu Guizeng Liang Ningce Zhang Tao Li Lipeng Diao Ping Lu Xiaoliang Zhao Daohao Li Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359

    19. [19]

      Yongheng Ren Yang Chen Hongwei Chen Lu Zhang Jiangfeng Yang Qi Shi Lin-Bing Sun Jinping Li Libo Li . Electrostatically driven kinetic Inverse CO2/C2H2 separation in LTA-type zeolites. Chinese Journal of Structural Chemistry, 2024, 43(10): 100394-100394. doi: 10.1016/j.cjsc.2024.100394

    20. [20]

      Huirong Chen Yingzhi He Yan Han Jianbo Hu Jiantang Li Yunjia Jiang Basem Keshta Lingyao Wang Yuanbin Zhang . A new SIFSIX anion pillared cage MOF with crs topological structure for efficient C2H2/CO2 separation. Chinese Journal of Structural Chemistry, 2025, 44(2): 100508-100508. doi: 10.1016/j.cjsc.2024.100508

Metrics
  • PDF Downloads(0)
  • Abstract views(777)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return