Citation: Farid Moeinpour, Amir Khojastehnezhad. Cesium carbonate supported on hydroxyapatite coated Ni0.5Zn0.5Fe2O4 magnetic nanoparticles as an effi cient and green catalyst for the synthesis of pyrano[2,3-c]pyrazoles[J]. Chinese Chemical Letters, ;2015, 26(5): 575-579. doi: 10.1016/j.cclet.2015.01.033 shu

Cesium carbonate supported on hydroxyapatite coated Ni0.5Zn0.5Fe2O4 magnetic nanoparticles as an effi cient and green catalyst for the synthesis of pyrano[2,3-c]pyrazoles

  • Corresponding author: Farid Moeinpour, 
  • Received Date: 6 November 2014
    Available Online: 26 January 2015

  • Cesium carbonate supported on hydroxyapatite coated Ni0.5Zn0.5Fe2O4 magnetic nanoparticles (Ni0.5Zn0.5Fe2O4@Hap-Cs2CO3) was found to be magnetically separable, highly efficient, green and recyclable heterogeneous catalyst. The synthesized nanocatalyst has been characterized with several methods (FT-IR, SEM, TEM, XRD and XRF) and these analyzes confirmed which the cesium carbonate is well supported to catalyst surface. After full characterization, its catalytic activity was investigated in the synthesis of pyranopyrazole derivatives and the reactions were carried out at room temperature in 50:50 water/ethanol with excellent yields (88-95%). More importantly, the Ni0.5Zn0.5Fe2O4@Hap-Cs2CO3 was easily separated from the reaction mixture by external magnetic field and efficiently reused at least six runs without any loss of its catalytic activity. Thus, the developed nanomagnetic base catalyst is potentially useful for the green and economic production of organic compounds.
  • 加载中
    1. [1]

      [1] C.W. Lim, I.S. Lee, Magnetically recyclable nanocatalyst systems for the organic reactions, Nano Today 5 (2010) 412-434.

    2. [2]

      [2] S. Shylesh, V. Schü nemann, W.R. Thiel, Magnetically separable nanocatalysts: bridges between homogeneous and heterogeneous catalysis, Angew. Chem. Int. Ed. 49 (2010) 3428-3459.

    3. [3]

      [3] P. Riente, C. Mendoza, M.A. Pericás, Functionalization of Fe3O4 magnetic nanoparticles for organocatalytic Michael reactions, J. Mater. Chem. 21 (2011) 7350-7355.

    4. [4]

      [4] R. Abu-Reziq, H. Alper, D. Wang, M.L. Post, Metal supported on dendronized magnetic nanoparticles: highly selective hydroformylation catalysts, J. Am. Chem. Soc. 128 (2006) 5279-5282.

    5. [5]

      [5] G.L. Hornyak, H.F. Tibbals, J. Dutta, J.J. Moore, Introduction to Nanoscience and Nanotechnology, CRC Press, USA, 2008.

    6. [6]

      [6] H.J. Kim, J.E. Ahn, S. Haam, et al., Synthesis and characterization of mesoporous Fe/SiO2 for magnetic drug targeting, J. Mater. Chem. 16 (2006) 1617-1621.

    7. [7]

      [7] H.M. Fan, J.B. Yi, Y. Yang, et al., Single-crystalline MFe2O4 nanotubes/nanorings synthesized by thermal transformation process for biological applications, ACS Nano 3 (2009) 2798-2808.

    8. [8]

      [8] S.A. Shah, M. Hashmi, S. Alam, A. Shamim, Magnetic and bioactivity evaluation of ferrimagnetic ZnFe2O4 containing glass ceramics for the hyperthermia treatment of cancer, J. Magn. Magn. Mater. 322 (2010) 375-381.

    9. [9]

      [9] A. Chaudhuri, M. Mandal, K. Mandal, Preparation and study of NiFe2O4/SiO2 core- shell nanocomposites, J. Alloys Compd. 487 (2009) 698-702.

    10. [10]

      [10] A. Goldman, Modern Ferrite Technology, 2nd ed., Springer, USA, 2006.

    11. [11]

      [11] J. Deng, L.P. Mo, F.Y. Zhao, et al., Sulfonic acid supported on hydroxyapatiteencapsulated-γ-Fe2O3 nanocrystallites as a magnetically separable catalyst for one-pot reductive amination of carbonyl compounds, Green Chem. 13 (2011) 2576-2584.

    12. [12]

      [12] L. Ma’mani, M. Sheykhan, A. Heydari, M. Faraji, Y. Yamini, Sulfonic acid supported on hydroxyapatite-encapsulated-γ-Fe2O3 nanocrystallites as a magnetically Brønsted acid for N-formylation of amines, Appl. Catal. A 377 (2010) 64-69.

    13. [13]

      [13] M.B. Smith, March’s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, John Wiley & Sons, 2013.

    14. [14]

      [14] H. Hattori, Heterogeneous basic catalysis, Chem. Rev. 95 (1995) 537-558.

    15. [15]

      [15] T. Hida, K. Komura, Y. Sugi, Cesium carbonate supported on alumina for the Michael addition of diethyl malonate to methyl acrylates, Bull. Chem. Soc. Jpn. 84 (2011) 960-967.

    16. [16]

      [16] M. Gupta, R. Gupta, M. Anand, Hydroxyapatite supported caesium carbonate as a new recyclable solid base catalyst for the Knoevenagel condensation in water, Beilstein J. Org. Chem. 5 (2009) 68-74.

    17. [17]

      [17] L. Bonsignore, G. Loy, D. Secci, A. Calignano, Synthesis and pharmacological activity of 2-oxo-(2H)-1-benzopyran-3-carboxamide derivatives, Eur. J. Med. Chem. 28 (1993) 517-520.

    18. [18]

      [18] G. Vasuki, K. Kumaravel, Rapid four-component reactions in water: synthesis of pyranopyrazoles, Tetrahedron Lett. 49 (2008) 5636-5638.

    19. [19]

      [19] A. Khojastehnezhad, M. Rahimizadeh, F. Moeinpour, H. Eshghi, M. Bakavoli, Polyphosphoric acid supported on silica-coated NiFe2O4 nanoparticles: an efficient and magnetically recoverable catalyst for N-formylation of amines, C.R. Chimie 17 (2014) 459-464.

    20. [20]

      [20] F. Moeinpour, A. Khojastehnezhad, Polyphosphoric acid supported on Ni0.5Zn0.5-Fe2O4 nanoparticles as a magnetically-recoverable green catalyst for the synthesis of pyranopyrazoles, Arab. J. Chem. (2014), http://dx.doi.org/10.1016/j.arabjc. 2014.02.009.

    21. [21]

      [21] A. Khojastehnezhad, M. Rahimizadeh, H. Eshghi, F. Moeinpour, M. Bakavoli, Ferric hydrogen sulfate supported on silica-coated nickel ferrite nanoparticles as new and green magnetically separable catalyst for 1,8-dioxodecahydroacridine synthesis, Chin. J. Catal. 35 (2014) 376-382.

    22. [22]

      [22] D. Zins, V. Cabuil, R. Massart, New aqueous magnetic fluids, J. Mol. Liq. 83 (1999) 217-232.

    23. [23]

      [23] M. Babaie, H. Sheibani, Nanosized magnesium oxide as a highly effective heterogeneous base catalyst for the rapid synthesis of pyranopyrazoles via a tandem four-component reaction, Arab. J. Chem. 4 (2011) 159-162.

    24. [24]

      [24] M. Farahi, B. Karami, I. Sedighimehr, H. Mohamadi Tanuraghaj, An environmentally friendly synthesis of 1,4-dihydropyrano[2,3-c]pyrazole derivatives catalyzed by tungstate sulfuric acid, Chin. Chem. Lett. 25 (2014) 1580-1582.

    25. [25]

      [25] H.F. Zhang, Z.Q. Ye, G. Zhao, Enantioselective synthesis of functionalized fluorinated dihydropyrano[2,3-c]pyrazoles catalyzed by a simple bifunctional diaminocyclohexane- thiourea, Chin. Chem. Lett. 25 (2014) 535-540.

    26. [26]

      [26] M.H. Brooker, J. Wang, Raman and infrared studies of lithium and cesium carbonates, Spectrochim. Acta A 48 (1992) 999-1008.

  • 加载中
    1. [1]

      Fangling Cui Zongjie Hu Jiayu Huang Xiaoju Li Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337

    2. [2]

      Xiao-Fang LvXiao-Yun RanYu ZhaoRui-Rui ZhangLi-Na ZhangJing ShiJi-Xuan XuQing-Quan KongXiao-Qi YuKun Li . Combing NIR-Ⅱ molecular dye with magnetic nanoparticles for enhanced photothermal theranostics with a 95.6% photothermal conversion efficiency. Chinese Chemical Letters, 2025, 36(4): 110027-. doi: 10.1016/j.cclet.2024.110027

    3. [3]

      Shuai LiLiuting ZhangFuying WuYiqun JiangXuebin Yu . Efficient catalysis of FeNiCu-based multi-site alloys on magnesium-hydride for solid-state hydrogen storage. Chinese Chemical Letters, 2025, 36(1): 109566-. doi: 10.1016/j.cclet.2024.109566

    4. [4]

      Xun ZhuChenchen ZhangYingying LiYin LuNa HuangDawei Wang . Degradation of perfluorooctanoic acid by inductively heated Fenton-like process over the Fe3O4/MIL-101 composite. Chinese Chemical Letters, 2024, 35(12): 109753-. doi: 10.1016/j.cclet.2024.109753

    5. [5]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

    6. [6]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

    7. [7]

      Longlong GengHuiling LiuWenfeng ZhouYong-Zheng ZhangHongliang HuangDa-Shuai ZhangHui HuChao LvXiuling ZhangSuijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120

    8. [8]

      Manoj Kumar SarangiL․D PatelGoutam RathSitansu Sekhar NandaDong Kee Yi . Metal organic framework modulated nanozymes tailored with their biomedical approaches. Chinese Chemical Letters, 2024, 35(11): 109381-. doi: 10.1016/j.cclet.2023.109381

    9. [9]

      Mengxiang ZhuTao DingYunzhang LiYuanjie PengRuiping LiuQuan ZouLeilei YangShenglei SunPin ZhouGuosheng ShiDongting Yue . Graphene controlled solid-state growth of oxygen vacancies riched V2O5 catalyst to highly activate Fenton-like reaction. Chinese Chemical Letters, 2024, 35(12): 109833-. doi: 10.1016/j.cclet.2024.109833

    10. [10]

      Fengxing LiangYongzheng ZhuNannan WangMeiping ZhuHuibing HeYanqiu ZhuPeikang ShenJinliang Zhu . Recent advances in copper-based materials for robust lithium polysulfides adsorption and catalytic conversion. Chinese Chemical Letters, 2024, 35(11): 109461-. doi: 10.1016/j.cclet.2023.109461

    11. [11]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    12. [12]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    13. [13]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    14. [14]

      Rui LiRuijie LuLibin YangJianwen LiZige GuoQiquan YanMengjun LiYazhuo NiKeying ChenYaoyang LiBo XuMengzhen CuiZhan LiZhiying Zhao . Immobilization of chitosan nano-hydroxyapatite alendronate composite microspheres on polyetheretherketone surface to enhance osseointegration by inhibiting osteoclastogenesis and promoting osteogenesis. Chinese Chemical Letters, 2025, 36(4): 110242-. doi: 10.1016/j.cclet.2024.110242

    15. [15]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    16. [16]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    17. [17]

      Lin Zhang Chaoran Li Thongthai Witoon Xingda An Le He . Nano-thermometry in photothermal catalysis. Chinese Journal of Structural Chemistry, 2025, 44(4): 100456-100456. doi: 10.1016/j.cjsc.2024.100456

    18. [18]

      Yu MaoYilin LiuXiaochen WangShengyang NiYi PanYi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443

    19. [19]

      Jiaqi JiaKathiravan MurugesanChen ZhuHuifeng YueShao-Chi LeeMagnus Rueping . Multiphoton photoredox catalysis enables selective hydrodefluorinations. Chinese Chemical Letters, 2025, 36(2): 109866-. doi: 10.1016/j.cclet.2024.109866

    20. [20]

      Ning LISiyu DUXueyi WANGHui YANGTao ZHOUZhimin GUANPeng FEIHongfang MAShang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372

Metrics
  • PDF Downloads(0)
  • Abstract views(698)
  • HTML views(24)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return