Citation: Tian-Tian Cao, Xu-Yang Yao, Jing Zhang, Qiao-Chun Wang, Xiang Ma. A cucurbit[8]uril recognized rigid supramolecular polymer with photo-stimulated responsiveness[J]. Chinese Chemical Letters, ;2015, 26(7): 867-871. doi: 10.1016/j.cclet.2015.01.032 shu

A cucurbit[8]uril recognized rigid supramolecular polymer with photo-stimulated responsiveness

  • Corresponding author: Qiao-Chun Wang,  Xiang Ma, 
  • Received Date: 5 December 2014
    Available Online: 20 January 2015

    Fund Project: the Shanghai Pujiang Program (No. 13PJD011) (No. 2011CB808400)the Fundamental Research Funds for the Central Universities. (No. 13PJD011)

  • A rigid supramolecular polymer was constructed in aqueous solution via cucurbit[8]uril (CB[8]) host recognition with a rigid monomer containing an azobenzene unit and two 4,40-bipyridin-1-ium (BP) moieties in the two ends, which also exhibited photo-responsiveness owing to the photoinduced transcis isomerization of azobenzene group.
  • 加载中
    1. [1]

      [1] C. Fouquey, J.M. Lehn, A.M. Levelut, Molecular recognition directed self-assembly of supramolecular liquid crystalline polymers from complementary chiral components, Adv. Mater. 2 (1990) 254–257.

    2. [2]

      [2] (a) R.P. Sijbesma, F.H. Beijer, E. Meijer, et al., Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding, Science 278 (1997) 1601–1604; (b) M.E. Belowich, C. Valente, J.F. Stoddart, et al., Positive cooperativity in the template-directed synthesis of monodisperse macromolecules, J. Am. Chem. Soc. 134 (2012) 5243–5261; (c) Z.M. Shi, C.F. Wu, Z.T. Li, et al., Foldamer-based chiral supramolecular alternate block copolymers tunedbyion-pair binding,Chem. Commun. 49(2013)2673–2675; (d) T. Park, S.C. Zimmerman, A supramolecular multi-block copolymer with a high propensity for alternation, J. Am. Chem. Soc. 128 (2006) 13986–13987; (e) X. Fu, Q. Zhang, D.H. Qu, et al., A fluorescent hyperbranched supramolecular polymer based on triple hydrogen bonding interactions, Polym. Chem. 5 (2014) 6662–6666; (f) A. Noro, M. Hayashi, Y. Matsushita, Design and properties of supramolecular polymer gels, Soft Matter 8 (2012) 6416–6429.

    3. [3]

      [3] (a) N.N. Adarsh, P. Dastidar, Coordination polymers: what has been achieved in going from innocent 4,4'-bipyridine to bis-pyridyl ligands having a non-innocent backbone? Chem. Soc. Rev. 41 (2012) 3039–3060; (b) Z. Li, A.M. Jamieson, S.J. Rowan, Stimuli-responsive europium-containing metallo-supramolecular polymers, J. Mater. Chem. 20 (2010) 145–151; (c) Y. Liu, Z. Wang, X. Zhang, et al., Cucurbit[8]uril-based supramolecular polymers: promoting supramolecular polymerization by metal-coordination, Chem. Commun. 49 (2013) 5766–5768; (d) S. Chen, X. Zhao, Z.T. Li, et al., Highly stable chiral (A)6–B supramolecular copolymers: a multivalency-based self-assembly process, J. Am. Chem. Soc. 133 (2011) 11124–11127.

    4. [4]

      [4] (a) X. Ma, H. Tian, Stimuli-responsive supramolecular polymers in aqueous solution, Acc. Chem. Res. 47 (2014) 1971–1981; (b) X. Ma, H. Tian, Bright functional rotaxanes, Chem. Soc. Rev. 39 (2010) 70–80; (c) Q. Zhang, X. Yao, X. Ma, et al., Multistate self-assembled micro-morphology transitions controlled by host–guest interactions, Chem. Commun. 50 (2014) 1567–1569; (d) X. Ji, Y. Yao, F. Huang, et al., A supramolecular cross-linked conjugated polymer network for multiple fluorescent sensing, J. Am. Chem. Soc. 135 (2013) 74–77; (e) X. Yan, D. Xu, F. Huang, et al., A multiresponsive, shape-persistent, and elastic supramolecular polymer network gel constructed by orthogonal self-assembly,, Adv. Mater. 24 (2012) 362–369; (f) Y. Liu, Y. Yu, X. Zhang, et al., Water-soluble supramolecular polymerization driven by multiple host-stabilized charge-transfer interactions, Angew. Chem. Int. Ed. 49 (2010) 6576–6579.

    5. [5]

      [5] (a) S. Burattini, B.W. Greenland, H. Colquhoun, et al., A supramolecular polymer based on tweezer-type π–π stacking interactions: molecular design for healability and enhanced toughness, Chem. Mater. 23 (2011) 6–8; (b) Y. Liu, Z. Wang, X. Zhang, et al., Host-enhanced π–π interaction for watersoluble supramolecular polymerization, Chem. Eur. J. 17 (2011) 9930–9935.

    6. [6]

      [6] (a) B. Zheng, F. Wang, F. Huang, et al., Supramolecular polymers constructed by crown ether-based molecular recognition, Chem. Soc. Rev. 41 (2012) 1621–1636; (b) Z. Zhang, Y. Luo, F. Huang, et al., Formation of linear supramolecular polymers that is driven by C–H·π interactions in solution and in the solid state, Angew. Chem. Int. Ed. 50 (2011) 1397–1401; (c) S. Dong, Y. Luo, F. Huang, et al., A dual-responsive supramolecular polymer gel formed by crown ether based molecular recognition, Angew. Chem. Int. Ed. 50 (2011) 1905–1909; (d) F. Wang, C.Y. Han, F. Huang, et al., Self-sorting organization of two heteroditopicmonomers to supramolecular alternating copolymers, J. Am. Chem. Soc. 130 (2008) 11254–11255; (e) H. Wang, Z.J. Zhang, Y. Liu, et al., Synthesis of a bistable [3]rotaxane and its pH-controlled intramolecular charge-transfer behavior, Chin. Chem. Lett. 24 (2013) 563–567; (f) H. Li, Y.W. Yang, Gold nanoparticles functionalized with supramolecular macrocycles, Chin. Chem. Lett. 24 (2013) 545–552.

    7. [7]

      [7] (a) L.L. Zhu, X. Li, H. Tian, et al., Photolockable ratiometric viscosity sensitivity of cyclodextrin polypseudorotaxane with light-active rotor graft, Langmuir 25 (2009) 3482–3486; (b) H. Chen, X. Ma, S. Wu, H. Tian, A rapidly self-healing supramolecular polymer hydrogel with photostimulated room-temperature phosphorescence responsiveness, Angew. Chem. Int. Ed. 53 (2014) 14149–14152;(c) Q. Zhang, D.H. Qu, H. Tian, et al., A dual-modality photoswitchable supramolecular polymer, Langmuir 29 (2013) 5345–5350; (d) L. Qin, P.F. Duan, M.H. Liu, Interfacial assembly and host–guest interaction of anthracene-conjugated l-glutamate dendron with cyclodextrin at the air/water interface, Chin. Chem. Lett. 25 (2014) 487–490; (e) Y.W. Yang, Y.L. Sun, N. Song, Switchable host–guest systems on surfaces, Acc. Chem. Res. 47 (2014) 1950–1960; (f) X. Ma, Q. Wang, H. Tian, Photo-driven molecular shuttles, Prog. Chem. 21 (2009) 106–115.

    8. [8]

      [8] (a) Z. Huang, L. Yang, Y. Liu, X. Zhang, Supramolecular polymerization promoted and controlled through self-sorting, Angew. Chem. Int. Ed. 53 (2014) 5351–5355; (b) Z.J. Zhang, H.Y. Zhang, Y. Liu, et al., Interconversion between [5]pseudorotaxane and [3]pseudorotaxane by pasting/detaching two axle molecules, J. Org. Chem. 76 (2011) 8270–8276; (c) H. Yang, Z. Ma, X. Zhang, et al., Fabricating covalently attached hyperbranched polymers by combining photochemistry with supramolecular polymerization, Polym. Chem. 5 (2014) 1471–1476; (d) C. Gao, S. Silvi, X. Ma, et al., Chiral supramolecular switches based on (R)- binaphthalene-bipyridinium guests and cucurbituril hosts, Chem. Eur. J. 18 (2012) 16911–16921; (e) C. Gao, S. Silvi, X. Ma, et al., Reversible modulation of helicity in a binaphthyl– bipyridinium species and its cucurbit[8]uril complexes, Chem. Commun. 48 (2012) 7577–7579.

    9. [9]

      [9] (a) D.S. Guo, Y. Liu, Calixarene-based supramolecular polymerization in solution, Chem. Soc. Rev. 41 (2012) 5907–5921; (b) R. Sun, Q. Zhang, X. Ma, et al., Novel supramolecular CT polymer employing disparate pseudorotaxanes as relevant monomers, Polymer 54 (2013) 2506–2510; (c) B.T. Zhao, X.M. Zhu,W.M. Zhu, et al., Novel clicked tetrathiafulvalene-calix[4]- arene assemblies: synthesis and intermolecular electron transfer toward p-chloranil, Chin. Chem. Lett. 24 (2013) 573–577.

    10. [10]

      [10] (a) M. Xue, Y. Yang, F. Huang, et al., Pillararenes, a new class of macrocycles for supramolecular chemistry, Acc. Chem. Res. 45 (2012) 1294–1308; (b) X.Y. Hu, X. Wu, L. Wang, et al., Pillar[5]arene-based supramolecular polypseudorotaxane polymer networks constructed by orthogonal self-assembly, Polym. Chem. 4 (2013) 4292–4297; (c) N. Song, Y.W. Yang, Applications of pillarenes, an emerging class of synthetic macrocycles, Sci. China Chem. 57 (2014) 1185–1198.

    11. [11]

      [11] (a) J. Lagona, P. Mukhopadhyay, L. Isaacs, et al., The cucurbit[n]uril family, Angew. Chem. Int. Ed. 44 (2005) 4844–4870; (b) J.W. Lee, S. Samal, K. Kim, et al., Cucurbituril homologues and derivatives: new opportunities in supramolecular chemistry, Acc. Chem. Res. 36 (2003) 621–630; (c) F. Sakai, Z.W. Ji, G.S. Chen, et al., A novel supramolecular graft copolymer via cucurbit[8]uril-based complexation and its self-assembly, Chin. Chem. Lett. 24 (2013) 568–572.

    12. [12]

      [12] (a) F. Lin, T.G. Zhan, X. Zhao, et al., The construction of rigid supramolecular polymers in water through the self-assembly of rod-like monomers and cucurbit[ 8]uril, Chem. Commun. 50 (2014) 7982–7985; (b) L. Zhang, T.Y. Zhou, Z.T. Li, et al., A two-dimensional single-layer supramolecular organic framework that is driven by viologen radical cation dimerization and further promoted by cucurbit[8]uril, Polym. Chem. 5 (2014) 4715–4721; (c) C. Zhou, J. Tian, Z.T. Li, et al., A three-dimensional cross-linking supramolecular polymer stabilized by the cooperative dimerization of the viologen radical cation, Polym. Chem. 5 (2014) 341–345.

    13. [13]

      [13] (a) X. Yan, F. Wang, F. Huang, et al., Stimuli-responsive supramolecular polymeric materials, Chem. Soc. Rev. 41 (2012) 6042–6065; (b) L. Sambe, V. de La Rosa, P. Woisel, Programmable polymer-based supramolecular temperature sensor with a memory function, Angew. Chem. Int. Ed. 53 (2014) 5044–5048.

    14. [14]

      [14] (a) J. del Barrio, P.N. Horton, O.A. Scherman, et al., Photocontrol over cucurbit[ 8]uril complexes: stoichiometry and supramolecular polymers, J. Am. Chem. Soc. 135 (2013) 11760–11763; (b) Q. Zhang, X. Ma, H. Tian, et al., Sol–gel conversion based on photoswitching between noncovalently and covalently linked netlike supramolecular polymers, Chem. Commun. 49 (2013) 9800–9802; (c) R. Sun, X. Ma, H. Tian, et al., Light-driven linear helical supramolecular polymer formed by molecular-recognition-directed self-assembly of bis(p-sulfonatocalix[ 4]arene) and pseudorotaxane, J. Am. Chem. Soc. 135 (2013) 5990–5993; (d) X. Yao, T. Li, S. Wang, X. Ma, H. Tian, A photochromic supramolecular polymer based on bis-p-sulfonatocalix[4]arene recognition in aqueous solution, Chem. Commun. 50 (2014) 7166–7168; (e) Z. Yan, J.F. Xu, P.J. Stang, et al., Photoinduced transformations of stiffstilbenebase discrete metallacycles to metallosupramolecular polymers, Proc. Natl. Acad. Sci. U. S. A. 111 (2014) 8717–8722.

    15. [15]

      [15] (a) S. Dong, B. Zheng, F. Huang, et al., A crown ether appended super gelator with multiple stimulus responsiveness, Adv. Mater. 24 (2012) 3191–3195; (b) X. Ji, S. Dong, F. Huang, et al., A novel diblock copolymer with a supramolecular polymer block and a traditional polymer block: preparation, controllable selfassembly in water, and application in controlled release, Adv. Mater. 25 (2013) 5725–5729; (c) X. Yao, X. Ma, H. Tian, Aggregation-induced emission encoding supramolecular polymers based on controllable sulfonatocalixarene recognition in aqueous solution, J. Mater. Chem. C 2 (2014) 5155–5160; (d) X. Ma, R. Sun, H. Tian, et al., Novel electrochemical and pH stimulus-responsive supramolecular polymer with disparate pseudorotaxanes as relevant unimers, Polym. Chem. 2 (2011) 1068–1070.

    16. [16]

      [16] M. Zhang, D. Xu, F. Huang, et al., Self-healing supramolecular gels formed by crown ether based host–guest interactions, Angew. Chem. Int. Ed. 51 (2012) 7011–7015.

    17. [17]

      [17] (a) X. Ma, Q. Wang, H. Tian, et al., A light-driven pseudo[4]rotaxane encoded by induced circular dichroism in a hydrogel, Adv. Funct. Mater. 17 (2007) 1409– 1411; (b) X. Ma, D. Qu, H. Tian, et al., A light-driven [1]rotaxane via self-complementary and suzuki-coupling capping, Chem. Commun. 14 (2007) 1409; (c) X. Ma, J. Cao, H. Tian, et al., Photocontrolled reversible room temperature phosphorescence (RTP) encoding b-cyclodextrin pseudorotaxane, Chem. Commun. 47 (2011) 3559–3561; (d) J. Cao, X. Ma, H. Tian, et al., INHIBIT logic operations based on light-driven bcyclodextrin pseudo[1]rotaxane with room temperature phosphorescence addresses, Chem. Commun. 50 (2014) 3224–3226.

    18. [18]

      [18] (a) I. Yamaguchi, H. Higashi, S. Shigesue, et al., N-Arylated pyridinium salts having reactive groups, Tetrahedron Lett. 48 (2007) 7778–7781; (b) R. Papadakis, I. Deligkiozi, A. Tsolomitis, Synthesis and characterization of a group of new medium responsive nonsymmetric viologens, chromotropism and structural effects, Dyes Pigm. 95 (2012) 478–484.

    19. [19]

      [19] (a) K.D. Zhang, X. Zhao, Z.T. Li, Toward a single-layer two-dimensional honeycomb supramolecular organic framework in water, J. Am. Chem. Soc. 135 (2013) 17913–17918; (b) Y.L. Liu, H. Yang, X. Zhang, Cucurbit[8]uril-based supramolecular polymers, Chem. Asian J. 8 (2013) 1626–1632.

    20. [20]

      [20] (a) I. Deligkiozi, R. Papadakis, A. Tsolomitis, Synthesis, characterisation and photoswitchability of a new [2]rotaxane of α-cyclodextrin with a diazobenzene containing π-conjugated molecular dumbbell, Supramol. Chem. 24 (2012) 333–343; (b) I. Deligkiozi, R. Papadakis, A. Tsolomitis, Photoconductive properties of a π-conjugated α-cyclodextrin containing [2]rotaxane and its corresponding molecular dumbbell, PhysChemChemPhys 15 (2013) 3497–3503.

  • 加载中
    1. [1]

      Yu XiaYangming JiangXin-Long NiQiaochun WangDaoping Wang . A macrocycle-based "Russian doll": The smallest cucurbit[4]uril in cucurbit[10]uril. Chinese Chemical Letters, 2024, 35(12): 109782-. doi: 10.1016/j.cclet.2024.109782

    2. [2]

      Lei ZhouYoujun ZhouLizhen FangYiqiao BaiYujia MengLiang LiJie YangYong Yao . Pillar[5]arene based artificial light-harvesting supramolecular polymer for efficient and recyclable photocatalytic applications. Chinese Chemical Letters, 2024, 35(9): 109509-. doi: 10.1016/j.cclet.2024.109509

    3. [3]

      Yan FanJiao TanCuijuan ZouXuliang HuXing FengXin-Long Ni . Unprecedented stepwise electron transfer and photocatalysis in supramolecular assembly derived hybrid single-layer two-dimensional nanosheets in water. Chinese Chemical Letters, 2025, 36(4): 110101-. doi: 10.1016/j.cclet.2024.110101

    4. [4]

      Zhen DaiLinzhi TanYeyu SuKerui ZhaoYushun TianYu LiuTao Liu . Site-specific incorporation of reduction-controlled guest amino acids into proteins for cucurbituril recognition. Chinese Chemical Letters, 2024, 35(5): 109121-. doi: 10.1016/j.cclet.2023.109121

    5. [5]

      Yi ZhouWei ZhangRong FuJiaxin DongYuxuan LiuZihang SongHan HanKang Cai . Self-assembly of two pairs of homochiral M2L4 coordination capsules with varied confined space using Tröger's base ligands. Chinese Chemical Letters, 2025, 36(2): 109865-. doi: 10.1016/j.cclet.2024.109865

    6. [6]

      Qian RenXue DaiRan CenYang LuoMingyang LiZiyun ZhangQinghong BaiZhu TaoXin Xiao . A cucurbit[8]uril-based supramolecular phosphorescent assembly: Cell imaging and sensing of amino acids in aqueous solution. Chinese Chemical Letters, 2024, 35(12): 110022-. doi: 10.1016/j.cclet.2024.110022

    7. [7]

      Cheng HeRenlan HuangLingling WeiQiuhui HeJinbo LiuJiao ChenGe GaoCheng YangWanhua Wu . Uncovering the mask of sensitizers to switch on the TTA-UC emission by supramolecular host-guest complexation. Chinese Chemical Letters, 2025, 36(4): 110103-. doi: 10.1016/j.cclet.2024.110103

    8. [8]

      Jie YangXin-Yue LouDihua DaiJingwei ShiYing-Wei Yang . Desymmetrized pillar[8]arenes: High-yield synthesis, functionalization, and host-guest chemistry. Chinese Chemical Letters, 2025, 36(1): 109818-. doi: 10.1016/j.cclet.2024.109818

    9. [9]

      Shaojie DengPeihua MaQinghong BaiXin Xiao . The transformation of nor-seco-cucurbit[10]uril to cucurbit[5]uril and cucurbit[8]uril controlled by its own concentration. Chinese Chemical Letters, 2025, 36(2): 109878-. doi: 10.1016/j.cclet.2024.109878

    10. [10]

      Xianchen HuJunli YangFang GaoZhiyong ZhaoSimin Liu . Highly selective [4+4] cross-photodimerization of (4a-azonia)anthracenes driven by confinement of D-A hetero-guest pair in cucurbit[10]uril host. Chinese Chemical Letters, 2025, 36(3): 109967-. doi: 10.1016/j.cclet.2024.109967

    11. [11]

      Ran CenYan-Yan TangLi-Xia ChenZhu TaoXin Xiao . A novel supramolecular assembly based on nor-seco-cucurbit[10]uril for spermine sensing and artificial light-harvesting. Chinese Chemical Letters, 2025, 36(1): 109744-. doi: 10.1016/j.cclet.2024.109744

    12. [12]

      Bingbing ShiYuchun WangYi ZhouXing-Xing ZhaoYizhou LiNuoqian YanWen-Juan QuQi LinTai-Bao Wei . A supramolecular oligo[2]rotaxane constructed by orthogonal platinum(Ⅱ) metallacycle and pillar[5]arene-based host–guest interactions. Chinese Chemical Letters, 2024, 35(10): 109540-. doi: 10.1016/j.cclet.2024.109540

    13. [13]

      Jianqiu LiYi ZhangSongen LiuJie NiuRong ZhangYong ChenYu Liu . Cucurbit[8]uril-based non-covalent heterodimer realized NIR cell imaging through topological transformation from nanowire to nanorod. Chinese Chemical Letters, 2024, 35(10): 109645-. doi: 10.1016/j.cclet.2024.109645

    14. [14]

      Jianmei Guo Yupeng Zhao Lei Ma Yongtao Wang . Ultra-long room temperature phosphorescence, intrinsic mechanisms and application based on host-guest doping systems. Chinese Journal of Structural Chemistry, 2024, 43(9): 100335-100335. doi: 10.1016/j.cjsc.2024.100335

    15. [15]

      Xiaoman DangZhiying WuTangxin XiaoZhouyu WangLeyong Wang . Highly robust supramolecular polymer networks crosslinked by metallacycles. Chinese Chemical Letters, 2024, 35(12): 110208-. doi: 10.1016/j.cclet.2024.110208

    16. [16]

      Lijun MaoShuo LiXin ZhangZhan-Ting LiDa Ma . Cucurbit[n]uril-based nanostructure construction and modification. Chinese Chemical Letters, 2024, 35(8): 109363-. doi: 10.1016/j.cclet.2023.109363

    17. [17]

      Hui-Juan WangWen-Wen XingZhen-Hai YuYong-Xue LiHeng-Yi ZhangQilin YuHongjie ZhuYao-Yao WangYu Liu . Cucurbit[7]uril confined phenothiazine bridged bis(bromophenyl pyridine) activated NIR luminescence for lysosome imaging. Chinese Chemical Letters, 2024, 35(6): 109183-. doi: 10.1016/j.cclet.2023.109183

    18. [18]

      Hao ZhangHaonan QuEhsan Bahojb NoruziHaibing LiFeng Liang . A nanocomposite film with layer-by-layer self-assembled gold nanospheres driven by cucurbit[7]uril for the selective transport of L-tryptophan and lysozyme. Chinese Chemical Letters, 2025, 36(1): 109731-. doi: 10.1016/j.cclet.2024.109731

    19. [19]

      Yulin MaoJingyu MaJiecheng JiYuliang WangWanhua WuCheng Yang . Crown aldoxime ethers: Their synthesis, structure, acid-catalyzed/photo-induced isomerization and adjustable guest binding. Chinese Chemical Letters, 2024, 35(11): 109927-. doi: 10.1016/j.cclet.2024.109927

    20. [20]

      Xueru ZhaoAopu WangShimin WangZhijie SongLi MaLi Shao . Adsorption and visual detection of nitro explosives by pillar[n]arenes-based host–guest interactions. Chinese Chemical Letters, 2025, 36(4): 110205-. doi: 10.1016/j.cclet.2024.110205

Metrics
  • PDF Downloads(0)
  • Abstract views(629)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return