Citation:
Kazuma Yasuhara, Kenichi Kuroda. Kinetic study of all-or-none hemolysis induced by cationic amphiphilic polymethacrylates with antimicrobial activity[J]. Chinese Chemical Letters,
;2015, 26(4): 479-484.
doi:
10.1016/j.cclet.2015.01.029
-
To gain an understanding of the toxicity of antimicrobial polymers to human cells, their hemolytic action was investigated using human red blood cells (RBCs). We examined the hemolysis induced by cationic amphiphilicmethacrylate random copolymers, which have amino ethyl sidechains as cationic units and either butyl or methyl methacrylate as hydrophobic units. The polymer with 30 mol% butyl sidechains (B30) displayed higher hemolytic toxicity than the polymer with 59 mol% methyl sidechains (M59). B30 also induced faster release of hemoglobin from RBCs than M59. A new theoretical model is proposed based on two consecutive steps to form active polymer species on the RBC membranes, which are associated to RBC lysis. This model takes the all-or-none release of hemoglobin by the rupture of RBCs into account, providing new insight into the polymer-induced hemolysis regarding how individual or collective cells respond to the polymers.
-
-
-
[1]
[1] H.W. Boucher, G.H. Talbot, J.S. Bradley, et al., Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America, Clin. Infect. Dis. 48 (2009) 1-12.
-
[2]
[2] K. Kuroda, W. DeGrado, Amphiphilic polymethacrylate derivatives as antimicrobial agents, J. Am. Chem. Soc. 127 (2005) 4128-4129.
-
[3]
[3] H. Takahashi, E.F. Palermo, K. Yasuhara, G.A. Caputo, K. Kuroda, Molecular design, structures, and activity of antimicrobial peptide-mimetic polymers, Macromol. Biosci. 13 (2013) 1285-1299.
-
[4]
[4] K. Kuroda, G.A. Caputo, Antimicrobial polymers as synthetic mimics of hostdefense peptides, Wires Nanomed. Nanobiotechnol. 5 (2013) 49-66.
-
[5]
[5] E.F. Palermo, S. Vemparala, K. Kuroda, Cationic spacer arm design strategy for control of antimicrobial activity and conformation of amphiphilic methacrylate random copolymers, Biomacromolecules 13 (2012) 1632-1641.
-
[6]
[6] I. Sovadinova, E.F. Palermo, M. Urban, et al., Activity and mechanism of antimicrobial peptide-mimetic amphiphilic polymethacrylate derivatives, Polymers 3 (2011) 1512-1532.
-
[7]
[7] W. van't Hof, E. Veerman, E.J. Helmerhorst, A. Amerongen, Antimicrobial peptides: properties and applicability, Biol. Chem. 382 (2001) 597-619.
-
[8]
[8] G.E. Rowe, R.A. Welch, Assays of hemolytic toxins, Methods Enzymol. 235 (1994) 657-667.
-
[9]
[9] K. Kuroda, G.A. Caputo, W.F. DeGrado, The role of hydrophobicity in the antimicrobial and hemolytic activities of polymethacrylate derivatives, Chem. Eur. J. 15 (2008) 1123-1133.
-
[10]
[10] I. Sovadinova, E.F. Palermo, R. Huang, L.M. Thoma, K. Kuroda, Mechanism of polymer-induced hemolysis: nanosized pore formation and osmotic lysis, Biomacromolecules 12 (2011) 260-268.
-
[11]
[11] W.F. DeGrado, G.F. Musso, M. Lieber, E.T. Kaiser, F.J. Ke′ zdy, Kinetics and mechanism of hemolysis induced by melittin and by a synthetic melittin analogue, Biophys. J. 37 (1982) 329-338.
-
[12]
[12] A. Pokorny, P.F.F. Almeida, Kinetics of dye efflux and lipid flip-flop induced by d-lysin in phosphatidylcholine vesicles and the mechanism of graded release by amphipathic, a-helical peptides, Biochemistry 43 (2004) 8846-8857.
-
[13]
[13] E.F. Palermo, D.K. Lee, A. Ramamoorthy, K. Kuroda, Role of cationic group structure in membrane binding and disruption by amphiphilic copolymers, J. Phys. Chem. B 115 (2011) 366-375.
-
[14]
[14] M.T. Tosteson, S.J. Holmes, M. Razin, D.C. Tosteson, Melittin lysis of red cells, J. Membr. Biol. 87 (1985) 35-44.
-
[15]
[15] M. Zasloff, Antimicrobial peptides of multicellular organisms, Nature 415 (2002) 389-395.
-
[16]
[16] Y. Shai, Mode of action of membrane active antimicrobial peptides, Biopolymers 66 (2002) 236-248.
-
[17]
[17] H.W. Huang, Action of antimicrobial peptides: two-state model, Biochemistry 39 (2000) 8347-8352.
-
[18]
[18] G. Schwarz, H. Gerke, V. Rizzo, S. Stankowski, Incorporation kinetics in a membrane, studied with the pore-forming peptide alamethicin, Biophys. J. 52 (1987) 685-692.
-
[19]
[19] K. Matsuzaki, O. Murase, K. Miyajima, Kinetics of pore formation by an antimicrobial peptide, magainin 2, in phospholipid bilayers, Biochemistry 34 (1995) 12553-12559.
-
[20]
[20] T.H. Lee, C. Heng, M.J. Swann, et al., Real-time quantitative analysis of lipid disordering by aurein 1.2 during membrane adsorption, destabilisation and lysis, Biochim. Biophys. Acta 1798 (2010) 1977-1986.
-
[21]
[21] S.J. Ludtke, K. He, H.W. Huang, Membrane thinning caused by magainin 2, Biochemistry 34 (1995) 16764-16769.
-
[22]
[22] A.W. Bernheimer, Comparative kinetics of hemolysis induced by bacterial and other hemolysins, J. Gen. Physiol. 30 (1947) 337-353.
-
[1]
-
-
-
[1]
Zixu Xie , Pengfei Zhang , Ziyao Zhang , Chen Chen , Xing Wang . The choice of antimicrobial polymers: Hydrophilic or hydrophobic?. Chinese Chemical Letters, 2024, 35(9): 109768-. doi: 10.1016/j.cclet.2024.109768
-
[2]
Guangyao Wang , Zhitong Xu , Ye Qi , Yueguang Fang , Guiling Ning , Junwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503
-
[3]
Dongpu Wu , Zheng Yang , Yuchen Xia , Lulu Wu , Yingxia Zhou , Caoyuan Niu , Puhui Xie , Xin Zheng , Zhanqi Cao . Surface controllable wettability using amphiphilic rotaxane molecular shuttles. Chinese Chemical Letters, 2025, 36(2): 110353-. doi: 10.1016/j.cclet.2024.110353
-
[4]
Chong Liu , Ling Li , Jiahui Gao , Yanwei Li , Nazhen Zhang , Jing Zang , Cong Liu , Zhaopei Guo , Yanhui Li , Huayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118
-
[5]
Cheng-Zhe Gao , Hao-Ran Jia , Tian-Yu Wang , Xiao-Yu Zhu , Xiaofeng Han , Fu-Gen Wu . A dual drug-loaded tumor vasculature-targeting liposome for tumor vasculature disruption and hypoxia-enhanced chemotherapy. Chinese Chemical Letters, 2025, 36(1): 109840-. doi: 10.1016/j.cclet.2024.109840
-
[6]
Dan-Ying Xing , Xiao-Dan Zhao , Chuan-Shu He , Bo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436
-
[7]
Xueling Yu , Lixing Fu , Tong Wang , Zhixin Liu , Na Niu , Ligang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167
-
[8]
Shangqian Zhang , Jiaxuan Li , Xuan Hu , Zelong Chen , Junliang Dong , Chenhao Hu , Shuang Chao , Yinghua Lv , Yuxin Pei , Zhichao Pei . H2S and NIR light-driven nanomotors induce disulfidptosis for targeted anticancer therapy by enhancing disruption of tumor metabolic symbiosis. Chinese Chemical Letters, 2025, 36(1): 110314-. doi: 10.1016/j.cclet.2024.110314
-
[9]
Jianwen Zhao , Shuai Wang , Shanshan Zhao , Liwei Chen , Fangang Meng , Xuelin Tian . A non-fluorinated liquid-like membrane with excellent anti-scaling performance for membrane distillation. Chinese Chemical Letters, 2025, 36(1): 109883-. doi: 10.1016/j.cclet.2024.109883
-
[10]
Junying Zhang , Ruochen Li , Haihua Wang , Wenbing Kang , Xing-Dong Xu . Photo-induced tunable luminescence from an aggregated amphiphilic ethylene-pyrene derivative in aqueous media. Chinese Chemical Letters, 2024, 35(6): 109216-. doi: 10.1016/j.cclet.2023.109216
-
[11]
Changlin Su , Wensheng Cai , Xueguang Shao . Water as a probe for the temperature-induced self-assembly transition of an amphiphilic copolymer. Chinese Chemical Letters, 2025, 36(4): 110095-. doi: 10.1016/j.cclet.2024.110095
-
[12]
Neng Shi , Haonan Jia , Jixiang Zhang , Pengyu Lu , Chenglong Cai , Yixin Zhang , Liqiang Zhang , Nongyue He , Weiran Zhu , Yan Cai , Zhangqi Feng , Ting Wang . Accurate expression of neck motion signal by piezoelectric sensor data analysis. Chinese Chemical Letters, 2024, 35(9): 109302-. doi: 10.1016/j.cclet.2023.109302
-
[13]
Yuxin Li , Chengbin Liu , Qiuju Li , Shun Mao . Fluorescence analysis of antibiotics and antibiotic-resistance genes in the environment: A mini review. Chinese Chemical Letters, 2024, 35(10): 109541-. doi: 10.1016/j.cclet.2024.109541
-
[14]
Ruilong Geng , Lingzi Peng , Chang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433
-
[15]
Hong Zhang , Cui-Ping Li , Li-Li Wang , Zhuo-Da Zhou , Wen-Sen Li , Ling-Yi Kong , Ming-Hua Yang . Asperochones A and B, two antimicrobial aromatic polyketides from the endophytic fungus Aspergillus sp. MMC-2. Chinese Chemical Letters, 2024, 35(9): 109351-. doi: 10.1016/j.cclet.2023.109351
-
[16]
Yaxian Liang , Qingyi Li , Liwei Hu , Ruohan Zhai , Fan Liu , Lin Tan , Xiaofei Wang , Huixu Xie . Environmentally friendly polylysine gauze dressing for an innovative antimicrobial approach to infected wound management. Chinese Chemical Letters, 2024, 35(10): 109459-. doi: 10.1016/j.cclet.2023.109459
-
[17]
Ling Tang , Yan Wan , Yangming Lin . Lowering the kinetic barrier via enhancing electrophilicity of surface oxygen to boost acidic oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100345-100345. doi: 10.1016/j.cjsc.2024.100345
-
[18]
Meng Shan , Yongmei Yu , Mengli Sun , Shuping Yang , Mengqi Wang , Bo Zhu , Junbiao Chang . Bifunctional organocatalyst-catalyzed dynamic kinetic resolution of hemiketals for synthesis of chiral ketals via hydrogen bonding control. Chinese Chemical Letters, 2025, 36(1): 109781-. doi: 10.1016/j.cclet.2024.109781
-
[19]
Hao Sun , Shengke Li , Qian Liu , Minzan Zuo , Xueqi Tian , Kaiya Wang , Xiao-Yu Hu . Supramolecular prodrug vesicles for selective antimicrobial therapy employing a chemo-photodynamic strategy. Chinese Chemical Letters, 2025, 36(3): 109999-. doi: 10.1016/j.cclet.2024.109999
-
[20]
Yunfen Gao , Liying Wang , Chufan Zhou , Yi Zhao , Hai Huang , Jun Wu . Low-dimensional antimicrobial nanomaterials in anti-infection treatment and wound healing. Chinese Chemical Letters, 2025, 36(3): 110028-. doi: 10.1016/j.cclet.2024.110028
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(585)
- HTML views(7)