Citation: Kazuma Yasuhara, Kenichi Kuroda. Kinetic study of all-or-none hemolysis induced by cationic amphiphilic polymethacrylates with antimicrobial activity[J]. Chinese Chemical Letters, ;2015, 26(4): 479-484. doi: 10.1016/j.cclet.2015.01.029 shu

Kinetic study of all-or-none hemolysis induced by cationic amphiphilic polymethacrylates with antimicrobial activity

  • Corresponding author: Kazuma Yasuhara,  Kenichi Kuroda, 
  • Received Date: 13 November 2014
    Available Online: 16 January 2015

    Fund Project: and JSPS KAKENHI, Grant-in-Aids for Challenging Exploratory Research (No. 25650053) for Young Scientists (Nos. 24681028 and 22700494 to KY). We thank Professor Robertson Davenport at the University of Michigan Hospital for supplying the red blood cells. We also thank Professor Edmund F. Palermo at Rensselaer Polytechnic Institute for his valuable discussions and comments. (No. DMR-0845592 to KK)

  • To gain an understanding of the toxicity of antimicrobial polymers to human cells, their hemolytic action was investigated using human red blood cells (RBCs). We examined the hemolysis induced by cationic amphiphilicmethacrylate random copolymers, which have amino ethyl sidechains as cationic units and either butyl or methyl methacrylate as hydrophobic units. The polymer with 30 mol% butyl sidechains (B30) displayed higher hemolytic toxicity than the polymer with 59 mol% methyl sidechains (M59). B30 also induced faster release of hemoglobin from RBCs than M59. A new theoretical model is proposed based on two consecutive steps to form active polymer species on the RBC membranes, which are associated to RBC lysis. This model takes the all-or-none release of hemoglobin by the rupture of RBCs into account, providing new insight into the polymer-induced hemolysis regarding how individual or collective cells respond to the polymers.
  • 加载中
    1. [1]

      [1] H.W. Boucher, G.H. Talbot, J.S. Bradley, et al., Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America, Clin. Infect. Dis. 48 (2009) 1-12.

    2. [2]

      [2] K. Kuroda, W. DeGrado, Amphiphilic polymethacrylate derivatives as antimicrobial agents, J. Am. Chem. Soc. 127 (2005) 4128-4129.

    3. [3]

      [3] H. Takahashi, E.F. Palermo, K. Yasuhara, G.A. Caputo, K. Kuroda, Molecular design, structures, and activity of antimicrobial peptide-mimetic polymers, Macromol. Biosci. 13 (2013) 1285-1299.

    4. [4]

      [4] K. Kuroda, G.A. Caputo, Antimicrobial polymers as synthetic mimics of hostdefense peptides, Wires Nanomed. Nanobiotechnol. 5 (2013) 49-66.

    5. [5]

      [5] E.F. Palermo, S. Vemparala, K. Kuroda, Cationic spacer arm design strategy for control of antimicrobial activity and conformation of amphiphilic methacrylate random copolymers, Biomacromolecules 13 (2012) 1632-1641.

    6. [6]

      [6] I. Sovadinova, E.F. Palermo, M. Urban, et al., Activity and mechanism of antimicrobial peptide-mimetic amphiphilic polymethacrylate derivatives, Polymers 3 (2011) 1512-1532.

    7. [7]

      [7] W. van't Hof, E. Veerman, E.J. Helmerhorst, A. Amerongen, Antimicrobial peptides: properties and applicability, Biol. Chem. 382 (2001) 597-619.

    8. [8]

      [8] G.E. Rowe, R.A. Welch, Assays of hemolytic toxins, Methods Enzymol. 235 (1994) 657-667.

    9. [9]

      [9] K. Kuroda, G.A. Caputo, W.F. DeGrado, The role of hydrophobicity in the antimicrobial and hemolytic activities of polymethacrylate derivatives, Chem. Eur. J. 15 (2008) 1123-1133.

    10. [10]

      [10] I. Sovadinova, E.F. Palermo, R. Huang, L.M. Thoma, K. Kuroda, Mechanism of polymer-induced hemolysis: nanosized pore formation and osmotic lysis, Biomacromolecules 12 (2011) 260-268.

    11. [11]

      [11] W.F. DeGrado, G.F. Musso, M. Lieber, E.T. Kaiser, F.J. Ke′ zdy, Kinetics and mechanism of hemolysis induced by melittin and by a synthetic melittin analogue, Biophys. J. 37 (1982) 329-338.

    12. [12]

      [12] A. Pokorny, P.F.F. Almeida, Kinetics of dye efflux and lipid flip-flop induced by d-lysin in phosphatidylcholine vesicles and the mechanism of graded release by amphipathic, a-helical peptides, Biochemistry 43 (2004) 8846-8857.

    13. [13]

      [13] E.F. Palermo, D.K. Lee, A. Ramamoorthy, K. Kuroda, Role of cationic group structure in membrane binding and disruption by amphiphilic copolymers, J. Phys. Chem. B 115 (2011) 366-375.

    14. [14]

      [14] M.T. Tosteson, S.J. Holmes, M. Razin, D.C. Tosteson, Melittin lysis of red cells, J. Membr. Biol. 87 (1985) 35-44.

    15. [15]

      [15] M. Zasloff, Antimicrobial peptides of multicellular organisms, Nature 415 (2002) 389-395.

    16. [16]

      [16] Y. Shai, Mode of action of membrane active antimicrobial peptides, Biopolymers 66 (2002) 236-248.

    17. [17]

      [17] H.W. Huang, Action of antimicrobial peptides: two-state model, Biochemistry 39 (2000) 8347-8352.

    18. [18]

      [18] G. Schwarz, H. Gerke, V. Rizzo, S. Stankowski, Incorporation kinetics in a membrane, studied with the pore-forming peptide alamethicin, Biophys. J. 52 (1987) 685-692.

    19. [19]

      [19] K. Matsuzaki, O. Murase, K. Miyajima, Kinetics of pore formation by an antimicrobial peptide, magainin 2, in phospholipid bilayers, Biochemistry 34 (1995) 12553-12559.

    20. [20]

      [20] T.H. Lee, C. Heng, M.J. Swann, et al., Real-time quantitative analysis of lipid disordering by aurein 1.2 during membrane adsorption, destabilisation and lysis, Biochim. Biophys. Acta 1798 (2010) 1977-1986.

    21. [21]

      [21] S.J. Ludtke, K. He, H.W. Huang, Membrane thinning caused by magainin 2, Biochemistry 34 (1995) 16764-16769.

    22. [22]

      [22] A.W. Bernheimer, Comparative kinetics of hemolysis induced by bacterial and other hemolysins, J. Gen. Physiol. 30 (1947) 337-353.

  • 加载中
    1. [1]

      Zixu XiePengfei ZhangZiyao ZhangChen ChenXing Wang . The choice of antimicrobial polymers: Hydrophilic or hydrophobic?. Chinese Chemical Letters, 2024, 35(9): 109768-. doi: 10.1016/j.cclet.2024.109768

    2. [2]

      Guangyao WangZhitong XuYe QiYueguang FangGuiling NingJunwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503

    3. [3]

      Dongpu WuZheng YangYuchen XiaLulu WuYingxia ZhouCaoyuan NiuPuhui XieXin ZhengZhanqi Cao . Surface controllable wettability using amphiphilic rotaxane molecular shuttles. Chinese Chemical Letters, 2025, 36(2): 110353-. doi: 10.1016/j.cclet.2024.110353

    4. [4]

      Chong LiuLing LiJiahui GaoYanwei LiNazhen ZhangJing ZangCong LiuZhaopei GuoYanhui LiHuayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118

    5. [5]

      Cheng-Zhe GaoHao-Ran JiaTian-Yu WangXiao-Yu ZhuXiaofeng HanFu-Gen Wu . A dual drug-loaded tumor vasculature-targeting liposome for tumor vasculature disruption and hypoxia-enhanced chemotherapy. Chinese Chemical Letters, 2025, 36(1): 109840-. doi: 10.1016/j.cclet.2024.109840

    6. [6]

      Dan-Ying XingXiao-Dan ZhaoChuan-Shu HeBo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436

    7. [7]

      Xueling YuLixing FuTong WangZhixin LiuNa NiuLigang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167

    8. [8]

      Shangqian ZhangJiaxuan LiXuan HuZelong ChenJunliang DongChenhao HuShuang ChaoYinghua LvYuxin PeiZhichao Pei . H2S and NIR light-driven nanomotors induce disulfidptosis for targeted anticancer therapy by enhancing disruption of tumor metabolic symbiosis. Chinese Chemical Letters, 2025, 36(1): 110314-. doi: 10.1016/j.cclet.2024.110314

    9. [9]

      Jianwen ZhaoShuai WangShanshan ZhaoLiwei ChenFangang MengXuelin Tian . A non-fluorinated liquid-like membrane with excellent anti-scaling performance for membrane distillation. Chinese Chemical Letters, 2025, 36(1): 109883-. doi: 10.1016/j.cclet.2024.109883

    10. [10]

      Junying ZhangRuochen LiHaihua WangWenbing KangXing-Dong Xu . Photo-induced tunable luminescence from an aggregated amphiphilic ethylene-pyrene derivative in aqueous media. Chinese Chemical Letters, 2024, 35(6): 109216-. doi: 10.1016/j.cclet.2023.109216

    11. [11]

      Changlin SuWensheng CaiXueguang Shao . Water as a probe for the temperature-induced self-assembly transition of an amphiphilic copolymer. Chinese Chemical Letters, 2025, 36(4): 110095-. doi: 10.1016/j.cclet.2024.110095

    12. [12]

      Neng ShiHaonan JiaJixiang ZhangPengyu LuChenglong CaiYixin ZhangLiqiang ZhangNongyue HeWeiran ZhuYan CaiZhangqi FengTing Wang . Accurate expression of neck motion signal by piezoelectric sensor data analysis. Chinese Chemical Letters, 2024, 35(9): 109302-. doi: 10.1016/j.cclet.2023.109302

    13. [13]

      Yuxin LiChengbin LiuQiuju LiShun Mao . Fluorescence analysis of antibiotics and antibiotic-resistance genes in the environment: A mini review. Chinese Chemical Letters, 2024, 35(10): 109541-. doi: 10.1016/j.cclet.2024.109541

    14. [14]

      Ruilong GengLingzi PengChang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433

    15. [15]

      Hong ZhangCui-Ping LiLi-Li WangZhuo-Da ZhouWen-Sen LiLing-Yi KongMing-Hua Yang . Asperochones A and B, two antimicrobial aromatic polyketides from the endophytic fungus Aspergillus sp. MMC-2. Chinese Chemical Letters, 2024, 35(9): 109351-. doi: 10.1016/j.cclet.2023.109351

    16. [16]

      Yaxian LiangQingyi LiLiwei HuRuohan ZhaiFan LiuLin TanXiaofei WangHuixu Xie . Environmentally friendly polylysine gauze dressing for an innovative antimicrobial approach to infected wound management. Chinese Chemical Letters, 2024, 35(10): 109459-. doi: 10.1016/j.cclet.2023.109459

    17. [17]

      Ling Tang Yan Wan Yangming Lin . Lowering the kinetic barrier via enhancing electrophilicity of surface oxygen to boost acidic oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100345-100345. doi: 10.1016/j.cjsc.2024.100345

    18. [18]

      Meng ShanYongmei YuMengli SunShuping YangMengqi WangBo ZhuJunbiao Chang . Bifunctional organocatalyst-catalyzed dynamic kinetic resolution of hemiketals for synthesis of chiral ketals via hydrogen bonding control. Chinese Chemical Letters, 2025, 36(1): 109781-. doi: 10.1016/j.cclet.2024.109781

    19. [19]

      Hao SunShengke LiQian LiuMinzan ZuoXueqi TianKaiya WangXiao-Yu Hu . Supramolecular prodrug vesicles for selective antimicrobial therapy employing a chemo-photodynamic strategy. Chinese Chemical Letters, 2025, 36(3): 109999-. doi: 10.1016/j.cclet.2024.109999

    20. [20]

      Yunfen GaoLiying WangChufan ZhouYi ZhaoHai HuangJun Wu . Low-dimensional antimicrobial nanomaterials in anti-infection treatment and wound healing. Chinese Chemical Letters, 2025, 36(3): 110028-. doi: 10.1016/j.cclet.2024.110028

Metrics
  • PDF Downloads(0)
  • Abstract views(585)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return