Citation: Shuang Zhi, Shuai Mu, Ying Liu, Min Gong, Ping-Bao Wang, Deng-Ke Liu. Synthesis and biological evaluation of novel phenothiazine derivatives as non-peptide arginine vasopressin V2 receptor antagonists[J]. Chinese Chemical Letters, ;2015, 26(5): 627-630. doi: 10.1016/j.cclet.2015.01.022 shu

Synthesis and biological evaluation of novel phenothiazine derivatives as non-peptide arginine vasopressin V2 receptor antagonists

  • Corresponding author: Deng-Ke Liu, 
  • Received Date: 27 January 2014
    Available Online: 23 December 2014

    Fund Project:

  • A series of novel phenothiazine derivatives was synthesized and tested for arginine vasopressin receptor antagonist activity. They were synthesized as novel arginine vasopressin receptor antagonists from phenothiazine as a scaffold via successive acylation, reduction and acylation reactions. Their structures were characterized by 1HNMR, 13CNMRandHRMS, and biological activitywas evaluated by in vitro and in vivo studies. The in vitro binding assay indicated that several compounds are potent selective V2 receptor antagonists. Compounds with promising binding affinity to V2 receptors were selected to conduct the in vivo diuretic studies on Sprague-Dawley rats. Among them, 1n, 1r, 1t and 1v exhibited excellent diuretic activity, especially 1r and 1v. Therefore, 1r and 1v are potent novelAVP V2receptor antagonist candidates.
  • 加载中
    1. [1]

      [1] G. Decaux, A. Soupart, G. Vassart, Non-peptide arginine-vasopressin antagonists: the vaptans, Lancet 371 (2008) 1624-1632.

    2. [2]

      [2] A. Dietrich, S. Mathia, H. Kaminski, et al., Chronic activation of vasopressin V2 receptor signalling lowers renal medullary oxygen levels in rats, Acta Physiol. 207 (2013) 721-731.

    3. [3]

      [3] C. Vaidya, W. Ho, B.J. Freda, Management of hyponatremia: providing treatment and avoiding harm, Clevel. Clin. J. Med. 77 (2010) 715-726.

    4. [4]

      [4] A.A. Rabinstein, N. Bruder, Management of hyponatremia and volume contraction, Neurocrit. Care 15 (2011) 354-360.

    5. [5]

      [5] S.K. Kumar, P.J. Mather, AVP receptor antagonists in patients with CHF, Heart Fail. Rev. 14 (2009) 83-86.

    6. [6]

      [6] B. Bishara, H. Shiekh, T. Karram, et al., Effects of novel vasopressin receptor antagonists on renal function and cardiac hypertrophy in rats with experimental congestive heart failure, J. Pharmacol. Exp. Ther. 326 (2008) 414-422.

    7. [7]

      [7] E. Higashihara, V.E. Torres, A.B. Chapman, et al., Tolvaptan in autosomal dominant polycystic kidney disease: three years’ experience, Clin. J. Am. Soc. Nephrol. 6 (2011) 2499-2507.

    8. [8]

      [8] A. Soupart,M. Coffernils, B. Couturier, F. Gankam-Kengne, G. Decaux, Efficacy and tolerance of urea compared with vaptans for long-term treatment of patients with SIADH, Clin. J. Am. Soc. Nephrol. 7 (2012) 742-747.

    9. [9]

      [9] F. Ali, M.A. Raufi, B. Washington, J.K. Ghali, Conivaptan: a dual receptor vasopressin V-1a/V-2 antagonist, Cardiovasc. Drug Rev. 25 (2007) 261-279.

    10. [10]

      [10] R.W. Schrier, P. Gross, M. Gheorghiade, et al., a selective oral vasopressin V-2-receptor antagonist, for hyponatremia, N. Engl. J. Med. 355 (2006) 2099- 2112.

    11. [11]

      [11] B.T. Bowman, M.H. Rosner, Lixivaptan-an evidence-based review of its clinical potential in the treatment of hyponatremia, Core Evid. 8 (2013) 47-56.

    12. [12]

      [12] A.L. Crombie, T.M. Antrilli, B.A. Campbell, et al., Synthesis and evaluation of azabicyclo 3.2.1 octane derivatives as potent mixed vasopressin antagonists, Bioorg. Med. Chem. Lett. 20 (2010) 3742-3745.

    13. [13]

      [13] I. Tsukamoto, H. Koshio, T. Kuramochi, et al., Synthesis and structure-activity relationships of amide derivatives of (4,4-difluoro-1,2,3,4-tetrahydro-5H-1-benzazepin- 5-ylidene)acetic acid as selective arginine vasopressin V-2 receptor agonists, Bioorg. Med. Chem. 17 (2009) 3130-3141.

    14. [14]

      [14] A.A. Failli, J.S. Shumsky, R.J. Steffan, et al., Pyridobenzodiazepines: a novel class of orally active, vasopressin V-2 receptor selective agonists, Bioorg. Med. Chem. Lett. 16 (2006) 954-959.

    15. [15]

      [15] A.M. Venkatesan, G.T. Grosu, A.A. Failli, et al., (4-Substituted-phenyl)-(5H- 10,11-dihydro-pyrrolo 2,1-c 1,4 benzodiazepin-1'-yl)-methanone derivatives as vasopressin receptor modulators, Bioorg. Med. Chem. Lett. 15 (2005) 5003- 5006.

    16. [16]

      [16] M.J. Urbanski, R.H. Chen, K.T. Demarest, et al., 2,5-disubstituted 3,4-dihydro-2Hbenzo b 1,4 thiazepines as potent and selective V-2 arginine vasopressin receptor antagonists, Bioorg. Med. Chem. Lett. 13 (2003) 4031-4034.

    17. [17]

      [17] S. Luk, R.S. Atayee, J.D. Ma, B.M. Best, Urinary diazepam metabolite distribution in a chronic pain population, J. Anal. Toxicol. 38 (2014) 135-142.

    18. [18]

      [18] M. Burnier, A.F. Fricker, D. Hayoz, J. Nussberger, H.R. Brunner, Pharmacokinetic and pharmacodynamic effects of YM087, a combined V1/V2 vasopressin receptor antagonist in normal subjects, Eur. J. Clin. Pharmacol. 55 (1999) 633- 637.

    19. [19]

      [19] S. Nodari, G.T. Jao, J.R. Chiong, Clinical utility of tolvaptan in the management of hyponatremia in heart failure patients, Int. J. Nephrol. Renovasc. Dis. 3 (2010) 51- 60.

    20. [20]

      [20] S. Mu, Y. Liu, M. Gong, D.K. Liu, C.X. Liu, Synthesis and biological evaluation of substituted desloratadines as potent arginine vasopressin V2 receptor antagonists, Molecules 19 (2014) 2694-2706.

    21. [21]

      [21] S. Mu, X. S. Xie, D. Niu, et al., Synthesis and biological evaluation of novel derivatives of desloratadine, Chin. Chem. Lett. 24 (2013) 531-534.

  • 加载中
    1. [1]

      Yulong ShiFenbei ChenMengyuan WuXin ZhangRunze MengKun WangYan WangYuheng MeiQionglu DuanYinghong LiRongmei GaoYuhuan LiHongbin DengJiandong JiangYanxiang WangDanqing Song . Chemical construction and anti-HCoV-OC43 evaluation of novel 10,12-disubstituted aloperine derivatives as dual cofactor inhibitors of TMPRSS2 and SR-B1. Chinese Chemical Letters, 2024, 35(5): 108792-. doi: 10.1016/j.cclet.2023.108792

    2. [2]

      Huiju CaoLei Shi . sp1-Hybridized linear and cyclic carbon chain. Chinese Chemical Letters, 2025, 36(4): 110466-. doi: 10.1016/j.cclet.2024.110466

    3. [3]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    4. [4]

      Bairu MengZongji ZhuoHan YuSining TaoZixuan ChenErik De ClercqChristophe PannecouqueDongwei KangPeng ZhanXinyong Liu . Design, synthesis, and biological evaluation of benzo[4,5]thieno[2,3-d]pyrimidine derivatives as novel HIV-1 NNRTIs. Chinese Chemical Letters, 2024, 35(6): 108827-. doi: 10.1016/j.cclet.2023.108827

    5. [5]

      Junjun HuangRan ChenYajian HuangHang ZhangAnran ZhengQing XiaoDan WuRuxia DuanZhi ZhouFei HeWei Yi . Discovery of an enantiopure N-[2-hydroxy-3-phenyl piperazine propyl]-aromatic carboxamide derivative as highly selective α1D/1A-adrenoceptor antagonist and homology modelling. Chinese Chemical Letters, 2024, 35(11): 109594-. doi: 10.1016/j.cclet.2024.109594

    6. [6]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    7. [7]

      Yanye FanJingjing ChenBichun ChenJinyu BaiBowen YangFeng LiangLijing Fang . Design, synthesis and biological evaluation of Leu10-teixobactin analogues. Chinese Chemical Letters, 2025, 36(4): 110075-. doi: 10.1016/j.cclet.2024.110075

    8. [8]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    9. [9]

      Ao SunZipeng LiShuchun LiXiangbao MengZhongtang LiZhongjun Li . Stereoselective synthesis of α-3-deoxy-D-manno-oct-2-ulosonic acid (α-Kdo) derivatives using a C3-p-tolylthio-substituted Kdo fluoride donor. Chinese Chemical Letters, 2025, 36(3): 109972-. doi: 10.1016/j.cclet.2024.109972

    10. [10]

      Hong-Tao JiYu-Han LuYan-Ting LiuYu-Lin HuangJiang-Feng TianFeng LiuYan-Yan ZengHai-Yan YangYong-Hong ZhangWei-Min He . Nd@C3N4-photoredox/chlorine dual catalyzed synthesis and evaluation of antitumor activities of 4-alkylated sulfonyl ketimines. Chinese Chemical Letters, 2025, 36(2): 110568-. doi: 10.1016/j.cclet.2024.110568

    11. [11]

      Mianling YangMeehyein KimPeng Zhan . Modular miniaturized synthesis and in situ biological evaluation facilitate rapid discovery of potent MraY inhibitors as antibacterial agents. Chinese Chemical Letters, 2025, 36(2): 110455-. doi: 10.1016/j.cclet.2024.110455

    12. [12]

      Shuying LiWeiwei ZhuGeXuan SunChongzhen SunZhaojun LiuChenghe XiongMin XiaoGuofeng Gu . Convergent synthesis and immunological study of oligosaccharide derivatives related to galactomannan from Antrodia cinnamomea. Chinese Chemical Letters, 2024, 35(5): 109089-. doi: 10.1016/j.cclet.2023.109089

    13. [13]

      Jian SongShenghui WangQiuge LiuXiao WangShuo YuanHongmin LiuSaiyang ZhangN-Benzyl arylamide derivatives as novel and potent tubulin polymerization inhibitors against gastric cancers: Design, structure–activity relationships and biological evaluations. Chinese Chemical Letters, 2025, 36(2): 109678-. doi: 10.1016/j.cclet.2024.109678

    14. [14]

      Zhiwei ChenHeyun ShengXue LiMenghan ChenXin LiQiuling Song . Efficient capture of difluorocarbene by pyridinium 1,4-zwitterionic thiolates: A concise synthesis of difluoromethylene-containing 1,4-thiazine derivatives. Chinese Chemical Letters, 2024, 35(4): 108937-. doi: 10.1016/j.cclet.2023.108937

    15. [15]

      Ruofan YinZhaoxin GuoRui LiuXian-Sen Tao . Ultrafast synthesis of Na3V2(PO4)3 cathode for high performance sodium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109643-. doi: 10.1016/j.cclet.2024.109643

    16. [16]

      Liyong DingZhenhua PanQian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125

    17. [17]

      Hongjin ShiGuoyin YinXi LuYangyang Li . Stereoselective synthesis of 2-deoxy-α-C-glycosides from glycals. Chinese Chemical Letters, 2024, 35(12): 109674-. doi: 10.1016/j.cclet.2024.109674

    18. [18]

      Gang LangJing FengBo FengJunlan HuZhiling RanZhiting ZhouZhenju JiangYunxiang HeJunling Guo . Supramolecular phenolic network-engineered C–CeO2 nanofibers for simultaneous determination of isoniazid and hydrazine in biological fluids. Chinese Chemical Letters, 2024, 35(6): 109113-. doi: 10.1016/j.cclet.2023.109113

    19. [19]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    20. [20]

      Kangmin WangLiqiu WanJingyu WangChunlin ZhouKe YangLiang ZhouBijin Li . Multifunctional 2-(2′-hydroxyphenyl)benzoxazoles: Ready synthesis, mechanochromism, fluorescence imaging, and OLEDs. Chinese Chemical Letters, 2024, 35(10): 109554-. doi: 10.1016/j.cclet.2024.109554

Metrics
  • PDF Downloads(0)
  • Abstract views(579)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return