Citation: Wei Liu, Yu-Jing Liu, Liao Chen, Tao Ye, Hong-Zheng Chen, Han-Ying Li. Gel-incorporated PbS and PbI2 single-crystals[J]. Chinese Chemical Letters, ;2015, 26(5): 504-508. doi: 10.1016/j.cclet.2015.01.020 shu

Gel-incorporated PbS and PbI2 single-crystals

  • Corresponding author: Han-Ying Li, 
  • Received Date: 22 January 2014
    Available Online: 9 January 2015

    Fund Project: This work was supported by Zhejiang Province Natural Science Foundation (No. LZ13E030002) (No. LZ13E030002) the 973 Program ([56_TD$DIF]No. 2014CB643503) ([56_TD$DIF]No. 2014CB643503) the National Natural Science Foundation of China (Nos. 51222302, 51373150, 51461165301) (Nos. 51222302, 51373150, 51461165301)

  • Gel-incorporated single-crystals provide unique combinational properties of long-range order and composite structures, which is desired for semiconducting and conducting materials. However, the reported gel-incorporated single-crystals are limited to insulating crystals. Here, we examine crystals of two typical semiconductors, lead sulfide (PbS) and lead iodide (PbI2), grown from both silica gels and agarose gels. In all the four crystal-gel pairs, single-crystals of the cubic phase of PbS and the hexagonal phase of PbI2 were obtained according to the X-ray diffraction analysis. Dissolution of the gel-grown crystals exposed insoluble materials with the shape similar to the original crystals, indicative of gelincorporation inside the crystals. As such, this work creates a facile strategy to construct 3D heterostructures inside semiconducting single-crystals without destroying their long-range order.
  • 加载中
    1. [1]

      [1] H.K. Henisch, Crystals in Gels and Liesegang Rings, Cambridge University Press, Cambridge, 2005.

    2. [2]

      [2] W. Brenner, Z.V.I. Blank, Y. Okamoto, Growth of single crystals of lead sulphide in silica gels near ambient temperatures, Nature 212 (1966) 392-393.

    3. [3]

      [3] A.R. Patel, A.V. Rao, Crystal growth in gel media, Bull. Mater. Sci. 4 (1982) 527- 548.

    4. [4]

      [4] J.M. García-Ruíz, Growth history of PbS single crystals at room temperature, J. Cryst. Growth 75 (1986) 441-453.

    5. [5]

      [5] J.A. Gavira, J.M. García-Ruiz, Agarose as crystallisation media for proteins II: trapping of gel fibres into the crystals, Acta Crystallogr. Sect. D: Biol. Crystallogr. 58 (2002) 1653-1656.

    6. [6]

      [6] E. Asenath-Smith, H.Y. Li, E.C. Keene, Z.W. Seh, L.A. Estroff, Crystal growth of calcium carbonate in hydrogels as a model of biomineralization, Adv. Funct. Mater. 22 (2012) 2891-2914.

    7. [7]

      [7] H. Nickl, H. Henisch, Growth of calcite crystals in gels, J. Electrochem. Soc. 116 (1969) 1258-1260.

    8. [8]

      [8] J.A. Gavira, A.E. Van Driessche, J.-M. Garcia-Ruiz, Growth of ultrastable protein- silica composite crystals, Cryst. Growth Des. 13 (2013) 2522-2529.

    9. [9]

      [9] J.M. García-Ruiz, J.A. Gavira, F. Otálora, A. Guasch, M. Coll, Reinforced protein crystals, Mater. Res. Bull. 33 (1998) 1593-1598.

    10. [10]

      [10] Y.-X. Huang, J. Buder, R. Cardoso-Gil, et al., Shape development and structure of a complex (Otoconia-Like?) calcite-gelatine composite, Angew. Chem. Int. Ed. 47 (2008) 8280-8284.

    11. [11]

      [11] O. Grassmann, R.B. Neder, A. Putnis, P. Löbmann, Biomimetic control of crystal assembly by growth in an organic hydrogel network, Am. Mineral. 88 (2003) 647-652.

    12. [12]

      [12] Y.J. Liu, W. Yuan, Y. Shi, et al., Functionalizing single crystals: incorporation of nanoparticles inside gel-grown calcite crystals, Angew. Chem. Int. Ed. Engl. 53 (2014) 4127-4131.

    13. [13]

      [13] H.Y. Li, Y. Fujiki, K. Sada, L.A. Estroff, Gel incorporation inside of organic single crystals grown in agarose hydrogels, CrystEngComm 13 (2011) 1060-1062.

    14. [14]

      [14] H.Y. Li, H.L. Xin, D.A. Muller, L.A. Estroff, Visualizing the 3D internal structure of calcite single crystals grown in agarose hydrogels, Science 326 (2009) 1244-1247.

    15. [15]

      [15] Y. Oaki, S. Hayashi, H. Imai, A hierarchical self-similar structure of oriented calcite with association of an agar gel matrix: inheritance of crystal habit from nanoscale, Chem. Commun. (2007) 2841-2843.

    16. [16]

      [16] Y.-Y. Kim, A.S. Schenk, D. Walsh, et al., Bio-inspired formation of functional calcite/metal oxide nanoparticle composites, Nanoscale 6 (2014) 852-859.

    17. [17]

      [17] S. Bag, P.N. Trikalitis, P.J. Chupas, G.S. Armatas, M.G. Kanatzidis, Porous semiconducting gels and aerogels from chalcogenide clusters, Science 317 (2007) 490- 493.

    18. [18]

      [18] R.I. Petrova, J.A. Swift, Habit changes of sodium bromate crystals grown from gel media, Cryst. Growth Des. 2 (2002) 573-578.

    19. [19]

      [19] L. Chen, T. Ye, Y.J. Liu, et al., Gel network incorporation into single-crystals: effects of gel structures and crystal-gel interaction, CrystEngComm 16 (2014) 6901-6906.

    20. [20]

      [20] Y.J. Liu, L. Chen, W. Liu, et al., Synthetic polymer/single-crystal composite, Polym. Adv. Technol. 25 (2014) 1189-1194.

    21. [21]

      [21] E.J. Crossland, N. Noel, V. Sivaram, et al., Mesoporous TiO2 single crystals delivering enhanced mobility and optoelectronic device performance, Nature 495 (2013) 215-219.

    22. [22]

      [22] R. Zeis, T. Lei, K. Sieradzki, J. Snyder, J. Erlebacher, Catalytic reduction of oxygen and hydrogen peroxide by nanoporous gold, J. Catal. 253 (2008) 132-138.

    23. [23]

      [23] Y. Ding, M.W. Chen, J. Erlebacher, Metallic mesoporous nanocomposites for electrocatalysis, J. Am. Chem. Soc. 126 (2004) 6876-6877.

    24. [24]

      [24] T. Fujita, P. Guan, K. McKenna, et al., Atomic origins of the high catalytic activity of nanoporous gold, Nat. Mater. 11 (2012) 775-780.

    25. [25]

      [25] J.L. Machol, F.W. Wise, R.C. Patel, D.B. Tanner, Vibronic quantum beats in PbS microcrystallites, Phys. Rev. B 48 (1993) 2819-2822.

    26. [26]

      [26] W.H. Song, C.H. Wu, H.Z. Yin, et al., Preparation of PbS nanoparticles by phasetransfer method and application to Pb2+-selective electrode based on PVC membrane, Anal. Lett. 41 (2008) 2844-2859.

    27. [27]

      [27] B.-R. Hyun, H. Chen, D.A. Rey, F.W. Wise, C.A. Batt, Near-infrared fluorescence imaging with water-soluble lead salt quantum dots, J. Phys. Chem. B 111 (2007) 5726-5730.

    28. [28]

      [28] P. Nair, O. Gomezdaza, M. Nair, Metal sulphide thin film photography with lead sulphide thin films, Adv. Mater. Opt. Electron. 1 (1992) 139-145.

    29. [29]

      [29] S. Gü nes, K.P. Fritz, H. Neugebauer, et al., Hybrid solar cells using PbS nanoparticles, Sol. Energy Mater. Sol. Cells 91 (2007) 420-423.

    30. [30]

      [30] M. Nam, J. Park, S.W. Kim, K. Lee, Broadband-absorbing hybrid solar cells with efficiency greater than 3% based on a bulk heterojunction of PbS quantum dots and a low-bandgap polymer, J. Mater. Chem. A 2 (2014) 3978-3985.

    31. [31]

      [31] H. Su, Y. Xie, P. Gao, Y. Xiong, Y. Qian, Synthesis of MS/TiO2 (M = Pb, Zn, Cd) nanocomposites through a mild sol-gel process, J. Mater. Chem. 11 (2001) 684- 686.

    32. [32]

      [32] Y.R. Ma, L.M. Qi, J.M. Ma, H.M. Cheng, Hierarchical, star-shaped PbS crystals formed by a simple solution route, Cryst. Growth Des. 4 (2004) 351-354.

    33. [33]

      [33] B. Ding, M.M. Shi, F. Chen, et al., Shape-controlled syntheses of PbS submicro-/nano-crystals via hydrothermal method, J. Cryst. Growth 311 (2009) 1533- 1538.

    34. [34]

      [34] F. Chen, W.M. Qiu, X.Q. Chen, M. Wang, H.Z. Chen, Nonsurfactant synthesis of PbS crystals via electrodeposition and hydrothermal methods: from octahedron to maya-pyramid, CrystEngComm 12 (2010) 1893-1898.

    35. [35]

      [35] X.H. Zhu, Z.R. Wei, Y.R. Jin, A.P. Xiang, Growth and characterization of a PbI2 single crystal used for gamma ray detectors, Cryst. Res. Technol. 42 (2007) 456-459.

    36. [36]

      [36] K. Shah, F. Olschner, L. Moy, et al., Lead iodide X-ray detection systems, Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 380 (1996) 266-270.

    37. [37]

      [37] V.H. Fragal, R. Silva, T.P. Cellet, et al., Hosted formation of PbS crystals on polyethylene modified surface, J. Braz. Chem. Soc. 24 (2013) 336-343.

    38. [38]

      [38] H.Y. Li, L.A. Estroff, Calcite growth in hydrogels: assessing the mechanism of polymer-network incorporation into single crystals, Adv. Mater. 21 (2009) 470- 473.

    39. [39]

      [39] Y. Wang, A. Suna, W. Mahler, R. Kasowski, PbS in polymers. From molecules to bulk solids, J. Chem. Phys. 87 (1987) 7315.

    40. [40]

      [40] A.R. Patel, A.V. Rao, An improved design to grow larger and more perfect single crystals in gels, J. Cryst. Growth. 49 (1980) 589-590.

    41. [41]

      [41] D. Bhavsar, K. Saraf, Morphology of PbI2 crystals grown by gel method, Cryst. Res. Technol. 37 (2002) 51-55.

    42. [42]

      [42] K. Sangwal, A.R. Patel, Growth features of PbS crystals grown in silica gels, J. Cryst. Growth 23 (1974) 282-288.

    43. [43]

      [43] M. Chand, G.C. Trigunayat, Effect of impurities on solid state structure transformations in gel-grown PbI2 crystals, J. Cryst. Growth 39 (1977) 299-304.

    44. [44]

      [44] A. Brif, G. Ankonina, C. Drathen, B. Pokroy, Bio-inspired band gap engineering of zinc oxide by intracrystalline incorporation of amino acids, Adv. Mater. 26 (2014) 477-481.

    45. [45]

      [45] M. Sindoro, Y. Feng, S. Xing, et al., Triple-layer (Au@perylene)@polyaniline nanocomposite: unconventional growth of faceted organic nanocrystals on polycrystalline Au, Angew. Chem. Int. Ed. Engl. 50 (2011) 9898-9902.

    46. [46]

      [46] Y. Zhao, B.R. Liu, L.J. Pan, G.H. Yu, 3D nanostructured conductive polymer hydrogels for high-performance electrochemical devices, Energy Environ. Sci. 6 (2013) 2856-2870.

    47. [47]

      [47] Y. Shi, L.J. Pan, B.R. Liu, et al., Nanostructured conductive polypyrrole hydrogels as high-performance, flexible supercapacitor electrodes, J. Mater. Chem. A 2 (2014) 6086-6091.

    48. [48]

      [48] K.Y. Hua, C.M. Deng, C. He, et al., Organic semiconductors-coated polyacrylonitrile (PAN) electrospun nanofibrous mats for highly sensitive chemosensors via evanescent- wave guiding effect, Chin. Chem. Lett. 24 (2013) 643-646.

  • 加载中
    1. [1]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

    2. [2]

      Hong-Tao JiYu-Han LuYan-Ting LiuYu-Lin HuangJiang-Feng TianFeng LiuYan-Yan ZengHai-Yan YangYong-Hong ZhangWei-Min He . Nd@C3N4-photoredox/chlorine dual catalyzed synthesis and evaluation of antitumor activities of 4-alkylated sulfonyl ketimines. Chinese Chemical Letters, 2025, 36(2): 110568-. doi: 10.1016/j.cclet.2024.110568

    3. [3]

      Min ChenBoyu PengXuyun GuoYe ZhuHanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051

    4. [4]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    5. [5]

      Xin HeFeng LiuTao Tu . Double redox-mediated intrinsic semiconductor photocatalysis: Practical semi-heterogeneous synthesis. Chinese Chemical Letters, 2025, 36(3): 110621-. doi: 10.1016/j.cclet.2024.110621

    6. [6]

      Jaeyong AhnZhenping LiZhiwei WangKe GaoHuagui ZhuoWanuk ChoiGang ChangXiaobo ShangJoon Hak Oh . Surface doping effect on the optoelectronic performance of 2D organic crystals based on cyano-substituted perylene diimides. Chinese Chemical Letters, 2024, 35(9): 109777-. doi: 10.1016/j.cclet.2024.109777

    7. [7]

      Ziyi Liu Feifei Guo Tingting Cao Youxuan Sun Xutang Tao Zeliang Gao . High thermal conductivity in Ga2TeO6 crystals: Synergistic effects of rigid polyhedral frameworks and stereochemically inert cations. Chinese Journal of Structural Chemistry, 2025, 44(4): 100544-100544. doi: 10.1016/j.cjsc.2025.100544

    8. [8]

      Xinyu GuoChang LiWenjun DengYi ZhouYan ChenYushuang XuRui Li . Phase engineering and heteroatom incorporation enable defect-rich MoS2 for long life aqueous iron-ion batteries. Chinese Chemical Letters, 2025, 36(3): 109715-. doi: 10.1016/j.cclet.2024.109715

    9. [9]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    10. [10]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    11. [11]

      Qian-Qian TangLi-Fang FengZhi-Peng LiShi-Hao WuLong-Shuai ZhangQing SunMei-Feng WuJian-Ping Zou . Single-atom sites regulation by the second-shell doping for efficient electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(9): 109454-. doi: 10.1016/j.cclet.2023.109454

    12. [12]

      Yuxiang Zhang Jia Zhao Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415

    13. [13]

      Jing Wang Zhongliao Wang Jinfeng Zhang Kai Dai . Single-layer crystalline triazine-based organic framework photocatalysts with different linking groups for H2O2 production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100202-100202. doi: 10.1016/j.cjsc.2023.100202

    14. [14]

      Mengjun SunZhi WangJvhui JiangXiaobing WangChuang Yu . Gelation mechanisms of gel polymer electrolytes for zinc-based batteries. Chinese Chemical Letters, 2024, 35(5): 109393-. doi: 10.1016/j.cclet.2023.109393

    15. [15]

      Yiwen XuChaozheng HeChenxu ZhaoLing Fu . Single-atom Ti doping on S-vacancy two-dimensional CrS2 as a catalyst for ammonia synthesis: A DFT study. Chinese Chemical Letters, 2025, 36(4): 109797-. doi: 10.1016/j.cclet.2024.109797

    16. [16]

      Kunyao PengXianbin WangXingbin Yan . Converting LiNO3 additive to single nitrogenous component Li2N2O2 SEI layer on Li metal anode in carbonate-based electrolyte. Chinese Chemical Letters, 2024, 35(9): 109274-. doi: 10.1016/j.cclet.2023.109274

    17. [17]

      Xingyan LiuChaogang JiaGuangmei JiangChenghua ZhangMingzuo ChenXiaofei ZhaoXiaocheng ZhangMin FuSiqi LiJie WuYiming JiaYouzhou He . Single-atom Pd anchored in the porphyrin-center of ultrathin 2D-MOFs as the active center to enhance photocatalytic hydrogen-evolution and NO-removal. Chinese Chemical Letters, 2024, 35(9): 109455-. doi: 10.1016/j.cclet.2023.109455

    18. [18]

      Xiujuan WangYijie WangLuyun CuiWenqiang GaoXiao LiHong LiuWeijia ZhouJingang Wang . Coordination-based synthesis of Fe single-atom anchored nitrogen-doped carbon nanofibrous membrane for CO2 electroreduction with nearly 100% CO selectivity. Chinese Chemical Letters, 2024, 35(12): 110031-. doi: 10.1016/j.cclet.2024.110031

    19. [19]

      Xin DongJing LiangZhijin XuHuajie WuLei WangShihai YouJunhua LuoLina Li . Exploring centimeter-sized crystals of bismuth-iodide perovskite toward highly sensitive X-ray detection. Chinese Chemical Letters, 2024, 35(6): 108708-. doi: 10.1016/j.cclet.2023.108708

    20. [20]

      Jiajing Wu Ru-Ling Tang Sheng-Ping Guo . Three types of promising functional building units for designing metal halide nonlinear optical crystals. Chinese Journal of Structural Chemistry, 2024, 43(6): 100291-100291. doi: 10.1016/j.cjsc.2024.100291

Metrics
  • PDF Downloads(0)
  • Abstract views(663)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return