Citation:
Yu Liang, Xiaopei Deng, Jay J. Senkevich, Hao Ding, Joerg Lahann. Thermal and environmental stability of poly(4-ethynyl-p-xylylene-co-p-xylylene) thin films[J]. Chinese Chemical Letters,
;2015, 26(4): 459-463.
doi:
10.1016/j.cclet.2015.01.018
-
The aim of this paper was to test the thermal and environmental stability of poly(4-ethynyl-p-xylyleneco- p-xylylene) thin films prepared by chemical vapor deposition (CVD) and to optimize the reaction conditions of the polymer. Fourier transformed infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and fluorescence microscopy were employed to investigate the stability of the reactive polymer coatings in various environmental conditions. Chemical reactivity of the thin films were then tested by Huisgen 1,3-dipolar cycloaddition reaction ("click" reaction). The alkyne functional groups on poly(4- ethynyl-p-xylylene-co-p-xylylene) thin films were found to be stable under ambient storage conditions and thermally stable up to 100℃ when annealed at 0.08 Torr in argon. We also optimized the click reaction conditions of azide-functionalized molecules with poly(4-ethynyl-p-xylylene-co-p-xylylene). The best reaction result was achieved, when copper concentration was 0.5 mmol/L, sodium ascorbate concentration to copper concentration was 5:1. In contrast, the azide concentration and temperature had no obvious effect on the surface reaction.
-
-
-
[1]
[1] W.F. Gorham, A new, general synthetic method for the preparation of linear polyp- xylylenes, J. Polym. Sci. Part A: Polym. Chem. 4 (1966) 3027-3039.
-
[2]
[2] J. Lahann, R. Langer, Novel poly(p-xylylenes): thin films with tailored chemical and optical properties, Macromolecules 35 (2002) 4380-4386.
-
[3]
[3] M.E. Alf, A. Asatekin, M.C. Barr, et al., Chemical vapor deposition of conformal, functional, and responsive polymer films, Adv. Mater. 22 (2010) 1993-2027.
-
[4]
[4] A. Greiner, Poly(1,4-xylylene)s: polymer films by chemical vapour deposition, Trends Polym. Sci. 5 (1997) 12-16.
-
[5]
[5] J. Lahann, R. Langer, Surface-initiated ring-opening polymerization of epsiloncaprolactone from a patterned poly(hydroxymethyl-p-xylylene), Macromol. Rapid Commun. 22 (2001) 968-971.
-
[6]
[6] J. Lahann, I.S. Choi, J. Lee, K.F. Jenson, R. Langer, A new method toward microengineered surfaces based on reactive coating, Angew. Chem. Int. Ed. 40 (2001) 3166-3169.
-
[7]
[7] H. Nandivada, H.Y. Chen, J. Lahann, Vapor-based synthesis of poly[(4-formyl-pxylylene)- co-(p-xylylene)] and its use for biomimetic surface modifications, Macromol. Rapid Commun. 26 (2005) 1794-1799.
-
[8]
[8] H.-Y. Chen, J. Lahann, Designable biointerfaces using vapor-based reactive polymers, Langmuir 27 (2011) 34-48.
-
[9]
[9] J. Lahann, M. Balcells, H. Lu, et al., Reactive polymer coatings: a first step toward surface engineering of microfluidic devices, Anal. Chem. 75 (2003) 2117-2122.
-
[10]
[10] M.-Y. Tsai, C.-Y. Lin, C.-H. Huang, et al., Vapor-based synthesis of maleimidefunctionalized coating for biointerface engineering, Chem. Commun. 48 (2012) 10969-10971.
-
[11]
[11] Y. Elkasabi, M. Yoshida, H. Nandivada, H.-Y. Chen, J. Lahann, Towards multipotent coatings: chemical vapor deposition and biofunctionalization of carbonyl-substituted copolymers, Macromol. Rapid Commun. 29 (2008) 855-870.
-
[12]
[12] X.P. Deng, J. Lahann, Orthogonal surface functionalization through bioactive vapor-based polymer coatings, J. Appl. Polym. Sci. 131 (2014) 40315.
-
[13]
[13] H. Nandivada, H.Y. Chen, L. Bondarenko, J. Lahann, Reactive polymer coatings that "click", Angew. Chem. Int. Ed. 45 (2006) 3360-3363.
-
[14]
[14] X. Jiang, H.Y. Chen, G. Galvan, M. Yoshida, J. Lahann, Vapor-based initiator coatings for atom transfer radical polymerization, Adv. Funct. Mater. 18 (2008) 27-35.
-
[15]
[15] X. Deng, C. Friedmann, J. Lahann, Bio-orthogonal "double-click" chemistry based on multifunctional coatings, Angew. Chem. Int. Ed. 50 (2011) 6522-6526.
-
[16]
[16] X. Zhang, Y. Zhang, Applications of azide-based bioorthogonal click chemistry in glycobiology, Molecules 18 (2013) 7145-7159.
-
[17]
[17] J.E. Moses, A.D. Moorhouse, The growing applications of click chemistry, Chem. Soc. Rev. 36 (2007) 1249-1262.
-
[18]
[18] K.K. Ghosh, H.H. Ha, N.Y. Kang, Y. Chandran, Y.T. Chang, Solid phase combinatorial synthesis of a xanthone library using click chemistry and its application to an embryonic stem cell probe, Chem. Commun. 47 (2011) 7488-7490.
-
[19]
[19] H. Kolb, M. Finn, K. Sharpless, Click chemistry: diverse chemical function from a few good reactions, Angew. Chem. 40 (2001) 2004-2021.
-
[20]
[20] C.D. Hein, X. Liu, D. Wang, Click chemistry, a powerful tool for pharmaceutical sciences, Pharm. Res. 25 (2008) 2216-2230.
-
[21]
[21] J.-F. Lutz, 1,3-Dipolar cycloadditions of azides and alkynes: a universal ligation tool in polymer and materials science, Angew. Chem. 46 (2007) 1018-1025.
-
[22]
[22] M. Meldal, C.W. Tornoe, Cu-catalyzed azide-alkyne cycloaddition, Chem. Rev. 108 (2008) 2952-3015.
-
[23]
[23] M.G. Finn, H.C. Kolb, V.V. Fokin, K.B. Sharpless, Click chemistry-definition and aims, Prog. Chem. 20 (2008) 1-5.
-
[24]
[24] J.J. Senkevich, Stability of CVD-produced polymer thin films, Chem. Vapor Depos. 17 (2011) 170-172.
-
[25]
[25] J.J. Senkevich, B.W. Woods, J.J. McMahon, P.I. Wang, Thermomechanical properties of parylene X, a room-temperature chemical vapor depositable crosslinkable polymer, Chem. Vapor Depos. 13 (2007) 55-59.
-
[26]
[26] X.P. Deng, T.W. Eyster, Y. Elkasabi, J. Lahann, Bio-orthogonal polymer coatings for co-presentation of biomolecules, Macromol. Rapid Commun. 33 (2012) 640-645.
-
[27]
[27] J.E. Hein, V.V. Fokin, Copper-catalyzed azide-alkyne cycloaddition (CuAAC) and beyond: new reactivity of copper(I) acetylides, Chem. Soc. Rev. 39 (2010) 1302- 1315.
-
[28]
[28] V. Hong, N.F. Steinmetz, M. Manchester, M.G. Finn, Labeling live cells by coppercatalyzed alkyne-azide click chemistry, Bioconjug. Chem. 21 (2010) 1912-1916.
-
[29]
[29] V.V. Rostovtsev, L.G. Green, V.V. Fokin, K.B. Sharpless, A stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective "ligation" of azides and terminal alkynes, Angew. Chem. 114 (2002) 2708-2711.
-
[30]
[30] V. Hong, S.I. Presolski, C. Ma, M.G. Finn, Analysis and optimization of coppercatalyzed azide-alkyne cycloaddition for bioconjugation, Angew. Chem. Int. Ed. 48 (2009) 9879-9883.
-
[31]
[31] J. González, V.M. Pérez, D.O. Jiménez, et al., Effect of temperature on triazole and bistriazole formation through copper-catalyzed alkyne-azide cycloaddition, Tetrahedron Lett. 52 (2011) 3514-3517.
-
[1]
-
-
-
[1]
Guizhi Zhu , Junrui Tan , Longfei Tan , Qiong Wu , Xiangling Ren , Changhui Fu , Zhihui Chen , Xianwei Meng . Growth of CeCo-MOF in dendritic mesoporous organosilica as highly efficient antioxidant for enhanced thermal stability of silicone rubber. Chinese Chemical Letters, 2025, 36(1): 109669-. doi: 10.1016/j.cclet.2024.109669
-
[2]
Yan Wang , Jiaqi Zhang , Xiaofeng Wu , Sibo Wang , Masakazu Anpo , Yuanxing Fang . Elucidating oxygen evolution and reduction mechanisms in nitrogen-doped carbon-based photocatalysts. Chinese Chemical Letters, 2025, 36(2): 110439-. doi: 10.1016/j.cclet.2024.110439
-
[3]
Shunshun Jiang , Ji Zhang , Jing Wang , Shan-Tao Zhang . Excellent energy storage properties in non-stoichiometric Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics. Chinese Chemical Letters, 2024, 35(7): 108955-. doi: 10.1016/j.cclet.2023.108955
-
[4]
Bo Yang , Pu-An Lin , Tingwei Zhou , Xiaojia Zheng , Bing Cai , Wen-Hua Zhang . Facile surface regulation for highly efficient and thermally stable perovskite solar cells via chlormequat chloride. Chinese Chemical Letters, 2024, 35(10): 109425-. doi: 10.1016/j.cclet.2023.109425
-
[5]
Mengfei He , Chao Chen , Yue Tang , Si Meng , Zunfa Wang , Liyu Wang , Jiabao Xing , Xinyu Zhang , Jiahui Huang , Jiangbo Lu , Hongmei Jing , Xiangyu Liu , Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029
-
[6]
Bin Dong , Ning Yu , Qiu-Yue Wang , Jing-Ke Ren , Xin-Yu Zhang , Zhi-Jie Zhang , Ruo-Yao Fan , Da-Peng Liu , Yong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221
-
[7]
Jingyuan Yang , Xinyu Tian , Liuzhong Yuan , Yu Liu , Yue Wang , Chuandong Dou . Enhancing stability of diradical polycyclic hydrocarbons via P=O-attaching. Chinese Chemical Letters, 2024, 35(8): 109745-. doi: 10.1016/j.cclet.2024.109745
-
[8]
Qiyan Wu , Ruixin Zhou , Zhangyi Yao , Tanyuan Wang , Qing Li . Effective approaches for enhancing the stability of ruthenium-based electrocatalysts towards acidic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(10): 109416-. doi: 10.1016/j.cclet.2023.109416
-
[9]
Yuchen Zhou , Huanmin Liu , Hongxing Li , Xinyu Song , Yonghua Tang , Peng Zhou . 设计热力学稳定的贵金属单原子光催化剂用于乙醇的高效非氧化转化形成高纯氢和增值产物乙醛. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067
-
[10]
Xiping Dong , Xuan Wang , Zhixiu Lu , Qinhao Shi , Zhengyi Yang , Xuan Yu , Wuliang Feng , Xingli Zou , Yang Liu , Yufeng Zhao . Construction of Cu-Zn Co-doped layered materials for sodium-ion batteries with high cycle stability. Chinese Chemical Letters, 2024, 35(5): 108605-. doi: 10.1016/j.cclet.2023.108605
-
[11]
Jing JIN , Zhuming GUO , Zhiyin XIAO , Xiujuan JIANG , Yi HE , Xiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458
-
[12]
Hailang Deng , Abebe Reda Woldu , Abdul Qayum , Zanling Huang , Weiwei Zhu , Xiang Peng , Paul K. Chu , Liangsheng Hu . Killing two birds with one stone: Enhancing the photoelectrochemical water splitting activity and stability of BiVO4 by Fe ions association. Chinese Chemical Letters, 2024, 35(12): 109892-. doi: 10.1016/j.cclet.2024.109892
-
[13]
Xinzhi Ding , Chong Liu , Jing Niu , Nan Chen , Shutao Xu , Yingxu Wei , Zhongmin Liu . Solid-state NMR study of the stability of MOR framework aluminum. Chinese Journal of Structural Chemistry, 2024, 43(4): 100247-100247. doi: 10.1016/j.cjsc.2024.100247
-
[14]
Ting Wang , Xin Yu , Yaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320
-
[15]
Tao LIU , Yuting TIAN , Ke GAO , Xuwei HAN , Ru'nan MIN , Wenjing ZHAO , Xueyi SUN , Caixia YIN . A photothermal agent with high photothermal conversion efficiency and high stability for tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1622-1632. doi: 10.11862/CJIC.20240107
-
[16]
Zhengzhong Zhu , Shaojun Hu , Zhi Liu , Lipeng Zhou , Chongbin Tian , Qingfu Sun . A cationic radical lanthanide organic tetrahedron with remarkable coordination enhanced radical stability. Chinese Chemical Letters, 2025, 36(2): 109641-. doi: 10.1016/j.cclet.2024.109641
-
[17]
Ningning Gao , Yue Zhang , Zhenhao Yang , Lijing Xu , Kongyin Zhao , Qingping Xin , Junkui Gao , Junjun Shi , Jin Zhong , Huiguo Wang . Ba2+/Ca2+ co-crosslinked alginate hydrogel filtration membrane with high strength, high flux and stability for dye/salt separation. Chinese Chemical Letters, 2024, 35(5): 108820-. doi: 10.1016/j.cclet.2023.108820
-
[18]
Hang Chen , Chengzhi Cui , Hebo Ye , Hanxun Zou , Lei You . Enhancing hydrolytic stability of dynamic imine bonds and polymers in acidic media with internal protecting groups. Chinese Chemical Letters, 2024, 35(5): 109145-. doi: 10.1016/j.cclet.2023.109145
-
[19]
Jingxuan Liu , Shiqi Zhao , Xiang Wu . Flexible electrochemical capacitor based NiMoSSe electrode material with superior cycling and structural stability. Chinese Chemical Letters, 2024, 35(7): 109059-. doi: 10.1016/j.cclet.2023.109059
-
[20]
Lingjiang Kou , Yong Wang , Jiajia Song , Taotao Ai , Wenhu Li , Mohammad Yeganeh Ghotbi , Panya Wattanapaphawong , Koji Kajiyoshi . Mini review: Strategies for enhancing stability of high-voltage cathode materials in aqueous zinc-ion batteries. Chinese Chemical Letters, 2025, 36(1): 110368-. doi: 10.1016/j.cclet.2024.110368
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(584)
- HTML views(2)