Citation: Yu Liang, Xiaopei Deng, Jay J. Senkevich, Hao Ding, Joerg Lahann. Thermal and environmental stability of poly(4-ethynyl-p-xylylene-co-p-xylylene) thin films[J]. Chinese Chemical Letters, ;2015, 26(4): 459-463. doi: 10.1016/j.cclet.2015.01.018 shu

Thermal and environmental stability of poly(4-ethynyl-p-xylylene-co-p-xylylene) thin films

  • Corresponding author: Joerg Lahann, 
  • Received Date: 4 November 2014
    Available Online: 6 January 2015

    Fund Project:

  • The aim of this paper was to test the thermal and environmental stability of poly(4-ethynyl-p-xylyleneco- p-xylylene) thin films prepared by chemical vapor deposition (CVD) and to optimize the reaction conditions of the polymer. Fourier transformed infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and fluorescence microscopy were employed to investigate the stability of the reactive polymer coatings in various environmental conditions. Chemical reactivity of the thin films were then tested by Huisgen 1,3-dipolar cycloaddition reaction ("click" reaction). The alkyne functional groups on poly(4- ethynyl-p-xylylene-co-p-xylylene) thin films were found to be stable under ambient storage conditions and thermally stable up to 100℃ when annealed at 0.08 Torr in argon. We also optimized the click reaction conditions of azide-functionalized molecules with poly(4-ethynyl-p-xylylene-co-p-xylylene). The best reaction result was achieved, when copper concentration was 0.5 mmol/L, sodium ascorbate concentration to copper concentration was 5:1. In contrast, the azide concentration and temperature had no obvious effect on the surface reaction.
  • 加载中
    1. [1]

      [1] W.F. Gorham, A new, general synthetic method for the preparation of linear polyp- xylylenes, J. Polym. Sci. Part A: Polym. Chem. 4 (1966) 3027-3039.

    2. [2]

      [2] J. Lahann, R. Langer, Novel poly(p-xylylenes): thin films with tailored chemical and optical properties, Macromolecules 35 (2002) 4380-4386.

    3. [3]

      [3] M.E. Alf, A. Asatekin, M.C. Barr, et al., Chemical vapor deposition of conformal, functional, and responsive polymer films, Adv. Mater. 22 (2010) 1993-2027.

    4. [4]

      [4] A. Greiner, Poly(1,4-xylylene)s: polymer films by chemical vapour deposition, Trends Polym. Sci. 5 (1997) 12-16.

    5. [5]

      [5] J. Lahann, R. Langer, Surface-initiated ring-opening polymerization of epsiloncaprolactone from a patterned poly(hydroxymethyl-p-xylylene), Macromol. Rapid Commun. 22 (2001) 968-971.

    6. [6]

      [6] J. Lahann, I.S. Choi, J. Lee, K.F. Jenson, R. Langer, A new method toward microengineered surfaces based on reactive coating, Angew. Chem. Int. Ed. 40 (2001) 3166-3169.

    7. [7]

      [7] H. Nandivada, H.Y. Chen, J. Lahann, Vapor-based synthesis of poly[(4-formyl-pxylylene)- co-(p-xylylene)] and its use for biomimetic surface modifications, Macromol. Rapid Commun. 26 (2005) 1794-1799.

    8. [8]

      [8] H.-Y. Chen, J. Lahann, Designable biointerfaces using vapor-based reactive polymers, Langmuir 27 (2011) 34-48.

    9. [9]

      [9] J. Lahann, M. Balcells, H. Lu, et al., Reactive polymer coatings: a first step toward surface engineering of microfluidic devices, Anal. Chem. 75 (2003) 2117-2122.

    10. [10]

      [10] M.-Y. Tsai, C.-Y. Lin, C.-H. Huang, et al., Vapor-based synthesis of maleimidefunctionalized coating for biointerface engineering, Chem. Commun. 48 (2012) 10969-10971.

    11. [11]

      [11] Y. Elkasabi, M. Yoshida, H. Nandivada, H.-Y. Chen, J. Lahann, Towards multipotent coatings: chemical vapor deposition and biofunctionalization of carbonyl-substituted copolymers, Macromol. Rapid Commun. 29 (2008) 855-870.

    12. [12]

      [12] X.P. Deng, J. Lahann, Orthogonal surface functionalization through bioactive vapor-based polymer coatings, J. Appl. Polym. Sci. 131 (2014) 40315.

    13. [13]

      [13] H. Nandivada, H.Y. Chen, L. Bondarenko, J. Lahann, Reactive polymer coatings that "click", Angew. Chem. Int. Ed. 45 (2006) 3360-3363.

    14. [14]

      [14] X. Jiang, H.Y. Chen, G. Galvan, M. Yoshida, J. Lahann, Vapor-based initiator coatings for atom transfer radical polymerization, Adv. Funct. Mater. 18 (2008) 27-35.

    15. [15]

      [15] X. Deng, C. Friedmann, J. Lahann, Bio-orthogonal "double-click" chemistry based on multifunctional coatings, Angew. Chem. Int. Ed. 50 (2011) 6522-6526.

    16. [16]

      [16] X. Zhang, Y. Zhang, Applications of azide-based bioorthogonal click chemistry in glycobiology, Molecules 18 (2013) 7145-7159.

    17. [17]

      [17] J.E. Moses, A.D. Moorhouse, The growing applications of click chemistry, Chem. Soc. Rev. 36 (2007) 1249-1262.

    18. [18]

      [18] K.K. Ghosh, H.H. Ha, N.Y. Kang, Y. Chandran, Y.T. Chang, Solid phase combinatorial synthesis of a xanthone library using click chemistry and its application to an embryonic stem cell probe, Chem. Commun. 47 (2011) 7488-7490.

    19. [19]

      [19] H. Kolb, M. Finn, K. Sharpless, Click chemistry: diverse chemical function from a few good reactions, Angew. Chem. 40 (2001) 2004-2021.

    20. [20]

      [20] C.D. Hein, X. Liu, D. Wang, Click chemistry, a powerful tool for pharmaceutical sciences, Pharm. Res. 25 (2008) 2216-2230.

    21. [21]

      [21] J.-F. Lutz, 1,3-Dipolar cycloadditions of azides and alkynes: a universal ligation tool in polymer and materials science, Angew. Chem. 46 (2007) 1018-1025.

    22. [22]

      [22] M. Meldal, C.W. Tornoe, Cu-catalyzed azide-alkyne cycloaddition, Chem. Rev. 108 (2008) 2952-3015.

    23. [23]

      [23] M.G. Finn, H.C. Kolb, V.V. Fokin, K.B. Sharpless, Click chemistry-definition and aims, Prog. Chem. 20 (2008) 1-5.

    24. [24]

      [24] J.J. Senkevich, Stability of CVD-produced polymer thin films, Chem. Vapor Depos. 17 (2011) 170-172.

    25. [25]

      [25] J.J. Senkevich, B.W. Woods, J.J. McMahon, P.I. Wang, Thermomechanical properties of parylene X, a room-temperature chemical vapor depositable crosslinkable polymer, Chem. Vapor Depos. 13 (2007) 55-59.

    26. [26]

      [26] X.P. Deng, T.W. Eyster, Y. Elkasabi, J. Lahann, Bio-orthogonal polymer coatings for co-presentation of biomolecules, Macromol. Rapid Commun. 33 (2012) 640-645.

    27. [27]

      [27] J.E. Hein, V.V. Fokin, Copper-catalyzed azide-alkyne cycloaddition (CuAAC) and beyond: new reactivity of copper(I) acetylides, Chem. Soc. Rev. 39 (2010) 1302- 1315.

    28. [28]

      [28] V. Hong, N.F. Steinmetz, M. Manchester, M.G. Finn, Labeling live cells by coppercatalyzed alkyne-azide click chemistry, Bioconjug. Chem. 21 (2010) 1912-1916.

    29. [29]

      [29] V.V. Rostovtsev, L.G. Green, V.V. Fokin, K.B. Sharpless, A stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective "ligation" of azides and terminal alkynes, Angew. Chem. 114 (2002) 2708-2711.

    30. [30]

      [30] V. Hong, S.I. Presolski, C. Ma, M.G. Finn, Analysis and optimization of coppercatalyzed azide-alkyne cycloaddition for bioconjugation, Angew. Chem. Int. Ed. 48 (2009) 9879-9883.

    31. [31]

      [31] J. González, V.M. Pérez, D.O. Jiménez, et al., Effect of temperature on triazole and bistriazole formation through copper-catalyzed alkyne-azide cycloaddition, Tetrahedron Lett. 52 (2011) 3514-3517.

  • 加载中
    1. [1]

      Guizhi ZhuJunrui TanLongfei TanQiong WuXiangling RenChanghui FuZhihui ChenXianwei Meng . Growth of CeCo-MOF in dendritic mesoporous organosilica as highly efficient antioxidant for enhanced thermal stability of silicone rubber. Chinese Chemical Letters, 2025, 36(1): 109669-. doi: 10.1016/j.cclet.2024.109669

    2. [2]

      Shi LiWenshuai ZhaoYong QiWenbin NiuWei MaBingtao TangShufen Zhang . Hydrogen bonding induced ultra-highly thermal stability of azo dyes for color films. Chinese Chemical Letters, 2025, 36(9): 110653-. doi: 10.1016/j.cclet.2024.110653

    3. [3]

      Haijiao LiMingzu ZhangJinlin HeJian LiuXingwei SunPeihong Ni . Synthesis of curcumin polyprodrug via click chemistry and construction of dual-drug-loaded nano platform for highly efficient tumor treatment. Chinese Chemical Letters, 2025, 36(8): 110615-. doi: 10.1016/j.cclet.2024.110615

    4. [4]

      Canglong LiTao LiaoDongping ChenTiancheng YouXiaozhi JiangMinghan XuHuaming YuGang ZhouGuanghui LiYuejiao Chen . Fabrication of carbon-coated V2O5-x nanoparticles by plasma-enhanced chemical vapor deposition for high-performance aqueous zinc-ion battery composite cathodes. Chinese Chemical Letters, 2025, 36(12): 110557-. doi: 10.1016/j.cclet.2024.110557

    5. [5]

      Zhuojun DuanPeiyue JinHouying XingJian ChenYueting YangYawen TanSong Liu . Salt-assisted synthesis of WTe2 contact electrodes for efficient MoS2-based hydrogen evolution reaction. Chinese Chemical Letters, 2026, 37(2): 111917-. doi: 10.1016/j.cclet.2025.111917

    6. [6]

      Yan WangJiaqi ZhangXiaofeng WuSibo WangMasakazu AnpoYuanxing Fang . Elucidating oxygen evolution and reduction mechanisms in nitrogen-doped carbon-based photocatalysts. Chinese Chemical Letters, 2025, 36(2): 110439-. doi: 10.1016/j.cclet.2024.110439

    7. [7]

      Shunshun JiangJi ZhangJing WangShan-Tao Zhang . Excellent energy storage properties in non-stoichiometric Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics. Chinese Chemical Letters, 2024, 35(7): 108955-. doi: 10.1016/j.cclet.2023.108955

    8. [8]

      Bo YangPu-An LinTingwei ZhouXiaojia ZhengBing CaiWen-Hua Zhang . Facile surface regulation for highly efficient and thermally stable perovskite solar cells via chlormequat chloride. Chinese Chemical Letters, 2024, 35(10): 109425-. doi: 10.1016/j.cclet.2023.109425

    9. [9]

      Zhilei ZhangYanan SunXiaosong ShiXiaozhe YinDawei LiuErjing WangJie LiuYuanyuan HuLang Jiang . Molecular tailoring towards two-dimensional organic crystals at the thickness limit. Chinese Chemical Letters, 2025, 36(9): 110786-. doi: 10.1016/j.cclet.2024.110786

    10. [10]

      Qi LiMinqiao LiangHuifen ZhuangZhengyang ChenYuxiang JiangXiaofei ChenYifa ChenYa-Qian Lan . Underscoring the polyimide-linkage in covalent organic frameworks and related applications. Chinese Chemical Letters, 2026, 37(2): 111593-. doi: 10.1016/j.cclet.2025.111593

    11. [11]

      Mengfei HeChao ChenYue TangSi MengZunfa WangLiyu WangJiabao XingXinyu ZhangJiahui HuangJiangbo LuHongmei JingXiangyu LiuHua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-0. doi: 10.3866/PKU.WHXB202310029

    12. [12]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

    13. [13]

      Jingyuan YangXinyu TianLiuzhong YuanYu LiuYue WangChuandong Dou . Enhancing stability of diradical polycyclic hydrocarbons via P=O-attaching. Chinese Chemical Letters, 2024, 35(8): 109745-. doi: 10.1016/j.cclet.2024.109745

    14. [14]

      Gao-Sheng ZhuZhen-Hang XuShao-Zhan LanLong LiYan-Ying ZhengLu ZhangQiao-Xia ShangBao-Yi YuChong-Chen Wang . Sustainable fungicide delivery via imazalil-functionalized nano-coordination polymer carriers: Enhanced stability, environmental safety, and pH-responsive properties. Chinese Chemical Letters, 2026, 37(2): 111428-. doi: 10.1016/j.cclet.2025.111428

    15. [15]

      Jingyu ShiXiaofeng WuYutong ChenYi ZhangXiangyan HouRuike LvJunwei LiuMengpei JiangKeke HuangShouhua Feng . Structure factors dictate the ionic conductivity and chemical stability for cubic garnet-based solid-state electrolyte. Chinese Chemical Letters, 2025, 36(5): 109938-. doi: 10.1016/j.cclet.2024.109938

    16. [16]

      Qiyan WuRuixin ZhouZhangyi YaoTanyuan WangQing Li . Effective approaches for enhancing the stability of ruthenium-based electrocatalysts towards acidic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(10): 109416-. doi: 10.1016/j.cclet.2023.109416

    17. [17]

      Yuanchun Pan Xinyun Lin Leyi Yang Wenya Hu Dekui Song Nan Liu . Artificial Intelligence Science Practice: Preparation of Electronic Skin by Chemical Vapor Deposition of Graphene. University Chemistry, 2025, 40(11): 272-280. doi: 10.12461/PKU.DXHX202412052

    18. [18]

      Xiping DongXuan WangZhixiu LuQinhao ShiZhengyi YangXuan YuWuliang FengXingli ZouYang LiuYufeng Zhao . Construction of Cu-Zn Co-doped layered materials for sodium-ion batteries with high cycle stability. Chinese Chemical Letters, 2024, 35(5): 108605-. doi: 10.1016/j.cclet.2023.108605

    19. [19]

      Mingzhu JiangPanqing WangQiheng ChenYue ZhangQi WuLei TanTianxiang NingLingjun LiKangyu Zou . Enabling the Nb/Ti co-doping strategy for improving structure stability and rate capability of Ni-rich cathode. Chinese Chemical Letters, 2025, 36(6): 110040-. doi: 10.1016/j.cclet.2024.110040

    20. [20]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

Metrics
  • PDF Downloads(0)
  • Abstract views(1168)
  • HTML views(21)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return