Citation: Xin-Yu Bian, Serge Maurice Mbadinga, Shi-Zhong Yang, Ru-Qiang Ye, Ji-Dong Gu, Bo-Zhong Mua. Synthesis of 2-[2H]-2-(1-methylalkyl)succinic acids[J]. Chinese Chemical Letters, ;2015, 26(5): 619-622. doi: 10.1016/j.cclet.2015.01.010 shu

Synthesis of 2-[2H]-2-(1-methylalkyl)succinic acids

  • Received Date: 17 September 2014
    Available Online: 25 December 2014

    Fund Project: This work was supported by the National Natural Science Foundation of China (No. 41373070, 51174092) (No. 41373070, 51174092)the National Natural Science Foundation of China/Research Grants Council Joint Research Fund (No. 41161160560). (No. 41161160560)

  • We describe a specific procedure for the synthesis of deuterium-labelled 2-(1-methylalkyl)succinate established via alkylation of diethyl malonate, Krapcho decarboxylation reaction with D2O and hydrolysis reaction. Two novel compounds, 2-[2H]-2-ethylsuccinic acid and 2-[2H]-2-(1-methylheptyl) succinic acid were prepared via this synthetic route and characterized by mass spectrometry and 1H NMR. The results showed that the 2-(1-methylalkyl)succinic acids were deuterated at the β-position, which is considered as an important reaction centre in the anaerobic degradation of n-alkanes.
  • 加载中
    1. [1]

      [1] S.M. Mbadinga, L.Y. Wang, L. Zhou, et al., Microbial communities involved in anaerobic degradation of alkanes, Int. Biodeterior. Biodegrad. 65 (2011) 1-13.

    2. [2]

      [2] F. Aeckersberg, F. Bak, F.Widdel, Anaerobic oxidation of saturated hydrocarbons to CO2 by a newtype of sulfate-reducing bacterium, Arch. Microbiol. 156 (1991) 5-14.

    3. [3]

      [3] F. Aeckersberg, F.A. Rainey, F. Widdel, Growth, natural relationships, cellular fatty acids and metabolic adaptation of sulfate-reducing bacteria that utilize long-chain alkanes under anoxic conditions, Arch. Microbiol. 170 (1998) 361-369.

    4. [4]

      [4] J. Heider, K. Schü hle, Anaerobic biodegradation of hydrocarbons including methane, in: E. Rosenberg, E.F. DeLong, S. Lory, E. Stackebrandt, F. Thompson (Eds.), The Prokaryotes-Prokaryotic Physiology and Biochemistry, Springer, Berlin, 2013.

    5. [5]

      [5] A.V. Callaghan, Enzymes involved in the anaerobic oxidation of n-alkanes: from methane to long-chain paraffins, Front. Microbiol. 4 (2013) 89.

    6. [6]

      [6] A.V. Callaghan, Metabolomic investigations of anaerobic hydrocarbon-impacted environments, Curr. Opin. Biotechnol. 24 (2013) 506-515.

    7. [7]

      [7] I.A. Davidova, L.M. Gieg, M. Nanny, K.G. Kropp, J.M. Suflita, Stable isotopic studies of n-alkane metabolism by a sulfate-reducing bacterial enrichment culture, Appl. Environ. Microbiol. 71 (2005) 8174-8182.

    8. [8]

      [8] X.Y. Bian, S.M. Mbadinga, S.Z. Yang, et al., Synthesis of anaerobic degradation biomarkers alkyl-, aryl-and cycloalkylsuccinic acids and their mass spectral characteristics, Eur. J. Mass Spectrom. 20 (2014) 279-285.

    9. [9]

      [9] L. Hu, J. Paul Fawcett, J. Gu, Protein target discovery of drug and its reactive intermediate metabolite by using proteomic strategy, Acta Pharm. Sin. B 2 (2012) 126-136.

    10. [10]

      [10] X. Guo, H. Li, H. Xu, et al., Glycolysis in the control of blood glucose homeostasis, Acta Pharm. Sin. B 2 (2012) 358-367.

    11. [11]

      [11] S. Klein, E. Heinzle, Isotope labeling experiments in metabolomics and fluxomics, WIREs Syst. Biol. Med. 4 (2012) 261-272.

    12. [12]

      [12] X.M. Chen, X.S. Li, A.S.C. Chan, Highly efficient synthesis of β-amino esters via Mannich-type reaction under solvent-free conditions using ZnCl2 catalyst, Chin. Chem. Lett. 20 (2009) 407-410.

    13. [13]

      [13] P.M. Gu, Y.M. Zhao, Y.Q. Tu, M. Wang, S.Y. Zhang, An alternative synthetic approach towards erythrinan and homoerythrinan alkaloids by tandem semipinacol/intramolecular Schmidt reaction, Chin. Chem. Lett. 18 (2007) 917-919.

    14. [14]

      [14] J. Huang, D. Wu, H.J. Ge, S.H. Liu, J. Yin, Fluorinated 1,8-naphthalimides: synthesis, solid structure and properties, Chin. Chem. Lett. 25 (2014) 1399-1402.

    15. [15]

      [15] A.P. Tulloch, Synthesis of deuterium and carbon-13 labelled lipids, Chem. Phys. Lipids 24 (1979) 391-406.

    16. [16]

      [16] A.P. Krapcho, J.F. Weimaster, J.M. Eldridge, et al., Synthetic applications and mechanism studies of the decarbalkoxylations of geminal diesters and related systems effected in dimethyl sulfoxide by water and/or by water with added salts, J. Org. Chem. 43 (1978) 138-147.

    17. [17]

      [17] C.G. Kruse, A.C.V. Janse, V. Dert, A. Van der Gen, Decarbethoxylation and ringopening reactions of 2-tetrahydrofuranyl-, 2-tetrahydrothienyl-, and 2-(1,3- dithianyl)-substituted esters, J. Org. Chem. 44 (1979) 2916-2920.

    18. [18]

      [18] P.S. Poon, A.K. Banerjee, M.S. Laya, Advances in the Krapcho decarboxylation, J. Chem. Res. 35 (2011) 67-73.

  • 加载中
    1. [1]

      Yan-Li LiZhi-Ming LiKai-Kai WangXiao-Long He . Beyond 1,4-addition of in-situ generated (aza-)quinone methides and indole imine methides. Chinese Chemical Letters, 2024, 35(7): 109322-. doi: 10.1016/j.cclet.2023.109322

    2. [2]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    3. [3]

      Guihuang FangWei ChenHongwei YangHaisheng FangChuang YuMaoxiang Wu . Improved performance of LiMn0.8Fe0.2PO4 by addition of fluoroethylene carbonate electrolyte additive. Chinese Chemical Letters, 2024, 35(6): 108799-. doi: 10.1016/j.cclet.2023.108799

    4. [4]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    5. [5]

      Yunqiang LiYongxian HuangSinuo LiHe HuangZhiwei Jiao . Elaborating azaaryl alkanes enabled by photoredox/palladium dual catalyzed dialkylation of azaaryl alkenes. Chinese Chemical Letters, 2025, 36(4): 110051-. doi: 10.1016/j.cclet.2024.110051

    6. [6]

      Yiqian JiangZihan YangXiuru BiNan YaoPeiqing ZhaoXu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331

    7. [7]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    8. [8]

      Xingmin ChenYunyun WuYao TangPeishen LiShuai GaoQiang WangWen LiuSihui Zhan . Construction of Z-scheme Cu-CeO2/BiOBr heterojunction for enhanced photocatalytic degradation of sulfathiazole. Chinese Chemical Letters, 2024, 35(7): 109245-. doi: 10.1016/j.cclet.2023.109245

    9. [9]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    10. [10]

      Xin Wang Changzhao Chen Qishen Wang Kai Dai . Graphene quantum dot modified Bi2MoO6 nanoflower for efficient degradation of BPA under visible light. Chinese Journal of Structural Chemistry, 2024, 43(12): 100473-100473. doi: 10.1016/j.cjsc.2024.100473

    11. [11]

      Xinlong ZhengZhongyun ShaoJiaxin LinQizhi GaoZongxian MaYiming SongZhen ChenXiaodong ShiJing LiWeifeng LiuXinlong TianYuhao Liu . Recent advances of CuSbS2 and CuPbSbS3 as photocatalyst in the application of photocatalytic hydrogen evolution and degradation. Chinese Chemical Letters, 2025, 36(3): 110533-. doi: 10.1016/j.cclet.2024.110533

    12. [12]

      Xian-Rui Meng Qian Chen Mei-Feng Wu Qiang Wu Su-Qin Wang Li-Ping Jin Fan Zhou Ren-Li Ma Jian-Ping Zou . Nano-flowers FeS/MoS2 composites as a peroxymonosulfate activator for efficient p-chlorophenol degradation. Chinese Journal of Structural Chemistry, 2025, 44(3): 100543-100543. doi: 10.1016/j.cjsc.2025.100543

    13. [13]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    14. [14]

      Kangmin WangLiqiu WanJingyu WangChunlin ZhouKe YangLiang ZhouBijin Li . Multifunctional 2-(2′-hydroxyphenyl)benzoxazoles: Ready synthesis, mechanochromism, fluorescence imaging, and OLEDs. Chinese Chemical Letters, 2024, 35(10): 109554-. doi: 10.1016/j.cclet.2024.109554

    15. [15]

      Xiaoxiao WangBolun WangFenfen JiJie YanJiacheng FangDoudou ZhangJi XuJing JiXinran HaoHemi LuanYanjun HongShulan QiuMin LiZhu YangWenlan LiuXiaodong CaiZongwei Cai . Discovery of plasma biomarkers for Parkinson’s disease diagnoses based on metabolomics and lipidomics. Chinese Chemical Letters, 2024, 35(11): 109653-. doi: 10.1016/j.cclet.2024.109653

    16. [16]

      Zhinan GUOJunli WANGQiang ZHAOZhifang JIAZuopeng LIKewei WANGYong GUO . Cu2O/Bi2CrO6 Z-scheme heterojunction: Construction and photocatalytic degradation properties for tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 741-752. doi: 10.11862/CJIC.20240403

    17. [17]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    18. [18]

      Meijuan ChenLiyun ZhaoXianjin ShiWei WangYu HuangLijuan FuLijun Ma . Synthesis of carbon quantum dots decorating Bi2MoO6 microspherical heterostructure and its efficient photocatalytic degradation of antibiotic norfloxacin. Chinese Chemical Letters, 2024, 35(8): 109336-. doi: 10.1016/j.cclet.2023.109336

    19. [19]

      Yuhao MaYufei ZhouMingchuan YuCheng FangShaoxia YangJunfeng Niu . Covalently bonded ternary photocatalyst comprising MoSe2/black phosphorus nanosheet/graphitic carbon nitride for efficient moxifloxacin degradation. Chinese Chemical Letters, 2024, 35(9): 109453-. doi: 10.1016/j.cclet.2023.109453

    20. [20]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

Metrics
  • PDF Downloads(0)
  • Abstract views(665)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return